Измерительный контроль в оптической микроскопии

В настоящее время получили широкое распространение телевизионные измерители линейных размеров, которые могут быть построены по двум различным схемам: с проекцией изображения на передающую телевизионную трубку и со сканированием оптического луча. Первый тип телевизионных измерительных устройств является более распространённым. Он состоит из следующих основных блоков (рис.4): оптического микроско

па, телевизионной камеры, видеоконтрольного устройства и анализатора телевизионных изображений (АТИ). В функции АТИ входит обработка видеосигнала и измерения по нему геометрических параметров контролируемого объекта. На рис.5 и 6 отображены реальные телевизионные микроскопы с измерительными системами, позволяющие анализировать и обрабатывать изображения различных элементов ЭА с целью исследования структурных и физико-химических характеристик их материалов.

Рис.4. Телевизионный микроскоп

1 - микрообъектив, 2 - полупрозрачное зеркало, 3 - окуляр, 4 – объектив телевизионной камеры, 5 - телевизионная передающая трубка, 6 – блок формирования видеосигнала, ТВК - телевизионная камера, ВКУ - видеоконтрольное устройство, АТИ - анализатор телевизионных изображений

Другим типом телевизионных измерительных систем являются телевизионные микроскопы со сканированием оптическим лучом. Возможны два способа получения сканирующего оптического луча: с помощью специальной электронно-лучевой трубки с бегущим световым пятном (рис.7) и путём строчно-кадровой развёртки лазерного луча по поверхности исследуемого объекта и регистрации при этом отраженного света (Рис.8).

В настоящее время практически используются лазерные телевизионные микроскопы, предназначенные для использования в технологии микроэлектроники. Они позволяют осуществлять наблюдение на экране видеомонитора как обычное изображение поверхности кристалла ИМС, образующееся рассеянным на объекте светом, так и внутреннее изображение активных компонентов ИМС, являющееся результатом проявления внутреннего фотоэффекта, вызванного поглощением интенсивного лазерного излучения (Рис.9). Это изображение несет информацию о состоянии полупроводниковых структур и позволяет проанализировать отказы, возникающие внутри полупроводникового кристалла ИМС, бесконтактным способом с использованием своеобразного лазерного щупа-зонда.

Рис.7. Принципиальная схема телевизионного микроскопа с бегущим пятном:

1 - ЭЛТ с бегущим пятном; 2 - полупрозрачное зеркало (светоделитель); 3 - окуляр микроскопа; 4 - объектив; 5 - зеркало; 6 - объект контроля; 7 - ФЭУ; 8 - электронная система; 9 - ВКУ; 10 - реперная координатная сетка (эталонная шкала); 11 - электронный блок с фотоприёмником, корректирующий абберации микрообъектива и нелинейность развёртки

В основу данного метода неразрушающего контроля заложен процесс оптической генерации свободных носителей заряда в полупроводнике. При поглощении света с энергией кванта, превышающей ширину запрещённой зоны, в поверхностном слое полупроводника возникают свободные носители заряда обоих типов.

Рис.8. Схема лазерного сканирующего микроскопа:

1-лазер; 2-вертикальный и горизонтальный дефлекторы (качающиеся зеркала); 3-электропривод дефлекторов; 4-оптическая система (обращённый микроскоп); 5-исследуемая микросхема; 6-предметный столик; 7-электронный блок обработки видеосигнала; 8-ВКУ; 9-генератор развёрток; 10-ФЭУ

Рис.9. Фотоответное изображение планарного транзистора в кристалле ИМС:

а – внешняя световая микрофотография n-p-n-транзистора; б – фотоответное изображение перехода база-эмиттер при обратном включении (переход заперт) с напряжением UБЭ=-0,01 В; в – UБЭ=-0,16 В

Если вблизи от области генерации находится потенциальный барьер любого происхождения (например, p-n-переход, барьер Шотки, граница поверхности), то избыточные электроны и дырки, дошедшие в результате диффузии до этого барьера, под действием внутреннего поля разделяются и двигаются в противоположных направлениях. При этом во внешней цепи возникает фото-ЭДС или фототок. С приближением светового зонда к области барьера фотоответ увеличивается пропорционально числу разведённых полем носителей и достигает максимума при освещении области объёмного заряда потенциального барьера.

Если сканировать поверхность полупроводниковой структуры оптическим зондом и регистрировать в каждой точке фототок, то картина распределения фототока, так называемое фотоответное изображение структуры, будет отражать расположение p-n-переходов и других потенциальных барьеров, что позволяет визуализировать различные дефекты активных элементов ИМС (рис.10). Этот метод может эффективно применяться для контроля состояния активных элементов (прямое и обратное включение транзисторов, логическое состояние триггеров) (рис.11). В сложных ИМС при снятии сигнала фотоответа в общей цепи характер фотоответного изображения элемента определяется не только его собственным состоянием, но и взаимосвязями с другими элементами (12). При этом появляется возможность получить информацию о состоянии практически всех активных элементов, доступ электрических зондов к которым практически затруднён или невозможен.

Рис.10. Фотоответное изображение транзисторов в фотоматрице (а):

б – годный транзистор; в, г – дефектные транзисторы

Рис.11. Фотоответное изображение транзисторов при прямом (а) и обратном (б) смещении и фотоответное изображение активных элементов триггера (в)

Рис.12. Принципиальная схема адресного формирователя БИС ЗУ (а) и его фотоответное изображение при пониженном (б) и нормальном (в) напряжении питания

СПИСОК ЛИТЕРАТУРЫ

1. Давыдов П.С. Техническая диагностика радиоэлектронных устройств и систем. - М.: Радио и связь, 2005. - 256 с.

2. Технические средства диагностирования: Справочник / Под общ. ред. В.В. Клюева. - М.: Машиностроение, 2005. - 672 с.

3. Приборы для неразрушающего контроля материалов и изделий. - Справочник. В 2-х кн. / Под ред. В.В. Клюева - М.: Машиностроение, 2006.

4. Г.А. Кейджян. Прогнозирование надежности микроэлектронной аппаратуры на основе БИС. - М.: Радио и связь, 2002.

Страница:  1  2 


Другие рефераты на тему «Коммуникации, связь и радиоэлектроника»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2025 - www.refsru.com - рефераты, курсовые и дипломные работы