Волоконно-оптические линии связи

С этого состояния начинается цепная реакция, подобная процессу в генераторе с обратной связью, вызываемая случайным процессом излучения энергии хотя бы одним из возбужденных атомов. Такой атом случайно переходит из состояния в состояние и при этом отдает энергию излуче

ния — сравнительно короткую последовательность колебаний, но все же достаточную, чтобы встретить на своем пути через стержневидный кристалл второй возбужденный атом. Частота этого колебания определяется по закону Планка разностью энергий и и соответствует длине волны приблизительно 694 нм или красному световому импульсу, находящемуся в видимой области спектра.

Этот процесс называется индуцированным или стимулированным излучением. Индуцированное колебание согласуется по частом и фазе с индуцирующим колебанием таким образом, что с полным основанием можно говорить об “усилении света индуцированной эмиссией излучения”. Отсюда произошло слово LASER: light amplification by stimulated emission of radiation.

Если в установившемся режиме энергия излучения при прохождении сигнала через кристалл больше потерь на поглощение энергии, то получается эффект самовозбуждения такой же, как в генераторе с обратной связью. Единичное спонтанное излучение связано с продолжительными непрерывными световыми колебаниями в теле кристалла (поскольку в кристалле постоянно имеется достаточное количество возбужденных атомов). Если нанести на одну из торцевых поверхностей стержня полупрозрачный зеркальный слой, то часть энергии излучения покинет кристаллический стержень в виде когерентного светового излучения.

В первые годы твердотельные лазеры применялись главным образом в импульсном режиме. В качестве источников света применялись лампы-вспышки, которые периодически возбуждали кристалл сверхмощными некогерентными световыми импульсами и вызывали излучение коротких когерентных световых импульсов. В качестве примера, разработанного в то время лазера непрерывного излучения можно назвать лазер на неодимовом гранате (Nd-YAG), ядро которого представляет собой иттриево-аллюминиевый гранат с примесью неодима. Основные линии энергии накачки лежат здесь в области длин волн 750 — 810 нм, основной лазерный переход — на 1064 нм. (Возбуждаемы также и другие переходы.)

3.3 ВЫСОКАЯ СТЕПЕНЬ КОГЕРЕНТНОСТИ ТРЕБУЕТ ЗАТРАТ

Описанный неодимо-иттриево-алюминиевый гранат является одним из многих возможных материалов, применяемых в лазерах. Приемлемы также многие другие материалы; требуется лишь, чтобы они принципиально могли излучать свет (флюоресцировать) и обладали метастабильным состоянием с возможно более высокой устойчивостью или временем жизни. Возбуждение этого состояния должно осуществляться с высоким КПД (что обусловливает относительно малую мощность накачки), и, наконец, материал должен обладать малыми оптическими потерями.

Некоторые газы хорошо соответствуют перечисленным условиям, поэтому можно построить так называемый газовый лазер. Один из наиболее известных газовых лазеров использует в качестве активного материала смесь из гелия и неона, где энергия возбуждения подводится в форме электрического разряда в газе. В тонкой стеклянной трубке длиной от нескольких десятков сантиметров до 1 м разряд зажигается между двумя электродами, впаянными в корпус трубки. При этом во всем объеме возбужденного газа внутри трубки возникают электроны, энергия которых служит для того, чтобы прежде всего перевести на более высокий энергетический уровень атомы гелия, которые в свою очередь в результате аналогичного эффекта возбуждают имеющиеся в незначительном количестве атомы неона. Эти атомы неона создают при описанном синхронизированном обратном переходе в основное состояние индуцированное излучение.

Техническим условием нарастания данного процесса в свою очередь является наличие оптического объемного резонатора, такого, какой получался в описанном выше твердотельном лазере при нанесении плоскопараллельных зеркальных слоев на обе торцевые поверхности кристалла. В газовом лазере активный элемент конструктивно отличается от активного элемента кристаллического лазера. Газоразрядная трубка сначала закрывается наклеенными стеклянными концевыми пластинками и затем — оптически точно выверенная — вносится в объемный резонатор, образованный двумя внешними зеркалами. В современных небольших газовых лазерах применяют также внутренние зеркала, располагаемые в газоразрядном пространстве. По крайней мере одно из зеркал делается полупрозрачным, так чтобы часть света могла покидать резонатор («окно Брюстера»).

Так как длина волны генерируемого лазером света определяется разностью энергетических уровней соответствующих активных материалов (и вполне могут существовать одновременно несколько таких излучающих переходов), возможно излучение света различных длин волн. Так, лазер на He–Ne может принципиально излучать на трех различных длинах волн. Чаще всего он работает на длине волны 0,63 мкм. Эта длина волны соответствует красному свету видимого диапазона. Наряду с ним имеются возбужденные, невидимые для нас длины волн 1,15 и 3,39 мкм. Какая из трех возможных волн покинет объем резонатора, определяет конструктор лазера нанесением частотноселективной пленки на зеркало.

Параметр

Гелий–неоновый

лазер (He-Ne)

Аргоновый

лазер (Ar)

-лазер

Длина волны излучаемого света, мкм

0,6328

1,15

3,39

0,488

0,515

10,6

9,6

Достигаемая выходная мощность, Вт

КПД, %

0,01–0,1

0,01–0,2

1–20

Страница:  1  2  3  4  5  6  7  8  9  10  11  12 


Другие рефераты на тему «Коммуникации, связь и радиоэлектроника»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2025 - www.refsru.com - рефераты, курсовые и дипломные работы