Численные методы

Чтобы построить сплайн необходимо найти 3n+3 неизвестных коэффициента. С этой целью сформирую функцию:

Pn(x)= ak2+bn+ck

Условия:

1.) Pi+1=yi, i=- n+1 условий

2.) Pk= Pk+1,

P'k=P'k+1,

3.) P1=A, P''n+1-B – краевые условия;

Теорема 11.1. Квадр. Сплайн дефекта один, вида (11.1) для функции существует и единственен.

Теорема 11.2. Пусть функция f(x) дважды непрерывна и дифференцируема на [a;b], а P(x)- сплайн вида (11.1), тогда для , (n- связано с числом узлов интерполяции) такие const c0, c1, c2; что для из [a;b] выполняются следующие неравенства:

| f(x)-P(x) | ≤ C0∆2

| f '(x)-P' (x)|≤C∆

| f ''(x)-P'' (x)|≤C2

где ∆- максимальное расстояние между узлами интерполяции, т.е ∆= max(xk-xk-1) 1≤k≤n

Метод наименьших квадратов

1. Формула метода наименьших квадратов, для линейной функции нескольких переменных.

2. Типовые способы преобразования нелинейной функции к линейной.

3. Метод наименьших квадратов для системы линейно – независимых функций.

4. Ряды и полиномы Фурье с использованием метода наименьших квадратов.

Пусть аппроксимируемая функция представляет собой функции n переменных y= f(x1…xn), которая задана таблицей своих значений:

информационная матрица

Такие таблицы формируются в ходе эксперимента для реальных объектов, у которых есть одна выходная переменная (отклик), которая зависит от нескольких выходных переменных (факторов).

необходимо аппроксимировать нашу функцию при помощи построения линейной функции (приближающей).

Необходимо построить приближение данной функции f(x1…xn), заданной инфо - матрицей посредством функции φ (x1…xn)=y, которая должна быть линейной, т.е. ее общий вид:

y= φ (x1…xn)=b0+b1x1+…+bnxn (11.2)

bi – неизвестные коэффициенты (параметры)

Задача аппроксимации состоит в определении bi.

Каков критерий для выбора этих параметров?

Пусть f(x)-функция одной переменной и точки, в которой она определена, изображены на координатной плоскости.

Проводим прямую, минимизируем сумму квадратов расстояний.

Поскольку в ходе эксперимента на объект могут воздействовать случайные помехи, то в инфо – матрице могут присутствовать значения, которые не характерны для самой функции, в силу этого требовать от аппроксимирующей функции совпадения значений со значениями исходной функции во всех точках неверно.

Необходимо минимизировать сумму квадратов отклонений аппроксимирующей функции от исходных в заданных точках:

(11.3)

Для данной задачи критерий (11.3) будет иметь вид:

(11.4)

Функция квадратичная, параболоид. Точка, в которой производные частные все будут равны 0

(11.5)

Так как функция (11.4) является квадратичной относительно переменных bi , то для нахождения ее минимума по этим переменным достаточно решить систему (11.5)

(11.6)

В системе (11.6) каждое уравнение делим на 2 и раскрываем сумму; перенося сумму с частью yj знак равенства:

(11.7)

Система (11.7) представляет собой СЛАУ относительно bi и может быть решена одним из известных методов.

Для упрощения записи и решения представим систему (11.7) в матричном виде. Введем матрицы:

Столбец из 1 добавили в U с целью универсализации решений, так как линейную функцию можно представить в виде:

y= b0x0+b1x1+…+ bnxn, где x0=1

(n+1)1

Тогда система (11.7) может быть записана в следующем виде:

[UTU]B=UTY (11.8)

Системы (11.7) и (11.8) называются нормальными. Используя, метод обратной матрицы система (11.8) имеет вид:

B= [UTU]-1UTY (11.9)

(11.9) - метод наименьших квадратов для линейной функции.

Страница:  1  2  3 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы