Представление логических функций от большого числа переменных

Оказывается, используя законы квантовой механики, можно построить такие компьютеры, для которых задача факторизации не составит большого труда. Согласно оценкам, квантовый компьютер с памятью объемом всего лишь в 10 тысяч квантовых битов способен разложить 1000-значное число на простые множители всего за несколько часов.

По мере распространения компьютеров ученые, занимавшиеся квантовыми об

ъектами, пришли к выводу о невозможности рассчитать состояние эволюционирующей системы, состоящей всего из десятков взаимодействующих частиц, например молекул метана. Объясняется это тем, что для полного описания сложной системы необходимо держать в памяти компьютера очень большое количество переменных, так называемых квантовых амплитуд. Возникла парадоксальная ситуация: зная уравнение эволюции, зная начальное состояние системы и все взаимодействия частиц, практически неважно вычислить её будущее, даже если система состоит из 30 электронов в потенциальной яме, а в распоряжении имеется суперкомпьютер с оперативной памятью, число битов которой равно числу атомов в видимой области Вселенной. И в то же время для исследования динамики такой системы можно просто поставить эксперимент с 30 электронами, поместив их в данные условия. Так и появилась идея использования квантовых процессов для практических вычислений. Первым эту проблему поднял русский математик Ю.И. Манин. Большое внимание к разработке квантовых компьютеров привлек лауреат Нобелевской премии Р.Фейнман. Благодаря его авторитетному призыву число специалистов, обративших внимание на квантовые вычисления, увеличилось во много раз.

Не буду останавливаться на устройстве квантового компьютера, скажу лишь, что стали возможны такие операции, не имеющие классических аналогов, например стало возможным задать операциюÖNOT так, чтобы ÖNOT*ÖNOT = NOT.

Вывод

Таким образом, мы на примерах разобрались в трудоемкости и громоздкости некоторых алгоритмов применительно к некоторым машинам, а так же в зависимости сложности логических функций от количества переменных, образующих эту функцию.

Литература

1. Гилл А. Введение в теорию конечных автоматов. М.: Наука, 1966.

2. Гэри М., Джонсон Д., Вычислительные машины и труднорешаемые задачи. М.: Мир, 1982.

3. Кузнецов О.П., Адельсон-Вельский Г.М., Дискретная математика для инженера. М.: Энергоатомиздат, 1988.

4. Манин Ю.И. Вычислимое и невычислимое. М.: Сов.радио, 1964.

5. И.фон Нейман Математические основы квантовой механики. М.: Наука, 1964.

6. Р.Фейнман Моделирование физики на компьютерах. Квантовый компьютер и квантовые вычисления. Ижевск: РХД, 1999.

7. Р.Фейнман Квантово-механические компьютеры. Там же.

8. В.В.Белокуров, О.Д.Тимофеевский, А.О.Хрусталев Квантовая телепортация – обыкновенное чудо. Ижевск: РХД, 2000.

9. А.Китаев, А. Шеня, М.Вялый Классические квантовые вычисления. М.: МЦНМО-ЧеРо, 1999.

Страница:  1  2  3  4 


Другие рефераты на тему «Программирование, компьютеры и кибернетика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы