Моделирование в системах управления
Одним из самых важных этапов, от которого зависит достоверность последующих результатов, является разделение исследуемой территории на транспортные блоки. Для каждого блока назначают центр тяготения и связи – виртуальные отрезки, через которые осуществляют вход и выход индивидуального транспорта из центра тяготения на улицы блока. Для связей задают такие параметры, как разрешенные системы транс
порта и доля индивидуального транспорта, движущегося по данному направлению. Также необходимы связи, показывающие перемещение пассажиров от остановочных площадок к центру тяготения района.
Далее рассматривают организацию движения транспортных средств. Здесь учитывают ограничение для отдельных видов транспорта или полный запрет поворотов на пересечениях (примыканиях) улиц и дорог, принимают во внимание организацию движения транспортных потоков на развязках в одном или нескольких уровнях, а также организацию одностороннего движения и т.д.
Банк параметров улично-дорожной сети предназначен для расчета в VISUM матриц затрат времени населения на поездки. Затраты могут так же выражаться в денежном виде, либо с помощью произвольных параметров.
С помощью полученных матриц затрат и статистических данных о населении города составляют матрицы корреспонденций индивидуального и общественного транспорта. Для этого используют программный модуль MULI, либо, если количество блоков не превышает 30, расчет можно проводить с помощью программного продукта Excel.
Основными статистическими данными необходимыми для создания матриц корреспонденций являются:
• численность населения каждого из выделенных блоков;
• численность трудоспособного населения;
• количество рабочих мест;
• количество людей, занятых в сфере услуг.
Полученные матрицы корреспонденций индивидуального и общественного транспорта подставляют в VISUM и производят распределение перемещений населения и индивидуального транспорта. Результат распределения представляют в виде эпюр.
Для получения более стабильных результатов расчет матриц корреспонденций, а следовательно и матриц затрат времени необходимо осуществить несколько раз (до тех пор пока система не придет в равновесие).
Последним шагом, обеспечивающим достоверность распределения транспортных потоков, является корректировка параметров модели, а также ручная корректировка значений интенсивности движения согласно натурным наблюдениям.
Программа для визуализации транспортной схемы дает возможность вынести на отрезки различную информацию, например: интенсивность движения, скорость, пропускную способность, название отрезка т.д. Также существует возможность классификации по различным признакам отрезков, узлов, остановок и других атрибутов, выделяя тем самым их из общей массы (по цвету, толщине полосы, форме, размеру, типу линии и т.д.)
Главным достоинством программы VISUM, является возможность прогноза запланированных мероприятий по организации движения транспортных средств. Это позволяет моделировать развитие транспортной сети с учетом реконструкции или строительства новых улиц, устройства пересечений в разных уровнях, изменения организации дорожного движения, строительства новых районов города, планирования последствий аварийных ситуаций и т.д.
Принимая во внимание более чем 25 летний опыт работы немецких разработчиков с использованием ведущих европейских и мировых научных достижений, интеграцию анализа общественного и индивидуального транспорта, а также наличие мощного инструмента анализа и прогнозирования результатов, специалисты отмечают, что семейство программ ptv vision занимает лидирующее место в России в области транспортного планирования.
В нашей стране с целью внедрения информационных технологий ptv vision и обучения работы с ними были проведены конференции и семинары в Москве, Иркутске, Екатеринбурге, Санкт-Петербурге, Томске.
На данный момент программный продукт VISUM проходит апробирование в Санкт-Петербурге, Москве и Томске. При этом даже на этапе адаптации она показывает хорошие возможности и все больше привлекает внимание специалистов, занимающихся транспортным планированием.
Список литературы
1. Финаев В.И. Модели систем принятия решений: Учеб. пособие. Таганрог: ТРТУ, 2005г. – 118 с.
2. Нечеткие множества в моделях управления и искусственного интеллекта/А.Н.Аверкин, И.З.Батырин, А.ф.Блиншун, Б.В.Силаев, Б.Н.Тарасов. ‑ М.: Наука, 1986. ‑ 312 с.
3. Финаев В.И., Белоглазов Д.А. Микропроцессорный нечеткий регулятор подачи топлива//Материалы VII Всероссийской научной конференции студентов и аспирантов "Техническая кибернетика, радиоэлектроника и системы управления". Таганрог, ТРТУ, 2004.
4. Заде Л. Понятие лингвистических переменных и его применение к принятию приближенных решений. - М.: Мир, 1976. - 165 с.
5. Мелихов А.Н., Баронец В.Д. Проектирование микропроцессорных устройств обработки нечеткой информации. ‑ Ростов-на-Дону.: Изд-во Ростовского университета, 1990. - 128 с.
6. http://www.mirkaspb.ru/ - Информационные технологии и системы в транспортной логистике.
7. http://www.cfin.ru/management/manufact/transport_log_.shtml - Электронный вариант книги "Транспортная логистика".
Другие рефераты на тему «Программирование, компьютеры и кибернетика»:
Поиск рефератов
Последние рефераты раздела
- Основные этапы объектно-ориентированного проектирования
- Основные структуры языка Java
- Основные принципы разработки графического пользовательского интерфейса
- Основы дискретной математики
- Программное обеспечение системы принятия решений адаптивного робота
- Программное обеспечение
- Проблемы сохранности информации в процессе предпринимательской деятельности