Социологические индексы и шкалы
1. Вы обычно стучите в дверь кабинета или комнаты, прежде чем войти (верно, неверно).
2. В публичных обсуждениях или дискуссиях Вы высказываете свое мнение лишь тогда, когда Вас прямо об этом попросят (верно, неверно).
3. Вы предпочтете промолчать, если Вам покажется, что Ваше справедливое и существенное замечание может вызвать раздражение у окружающих (верно, неверно).
Конечно, мож
но предположить, что некоторые из изобретенных исследователем вопросов отражают скорее «социальную тревожность» или «конформизм», но в данном случае мы будем руководствоваться тем, что идеальных индикаторов не бывает: бывают индикаторы, дающие лучшее или худшее приближение к идеальной шкале для реальных данных.
Итак, социологу предстоит проверить, насколько полученное им эмпирическое распределение ответов соответствует тем теоретически возможным паттернам ответов на три вопроса, которые в таблице 6.2 образуют безупречный «параллелограмм», характерный для идеальной гутмановской шкалы. Для случая трех вопросов возможны четыре «правильных» паттерна ответов, обозначаемых обычно как школьные типы ответов:
социологический индекс шкала
1. + + +
2. + + ¾
3. + ¾ ¾
4. ¾ — —
Предположим, что наш социолог получил следующую картину распределения шкальных типов (см. табл. 3).
Таблица 3
Распределение ответов для шкальных типов
Вопросы Ответы |
Вопрос 1 («стук в дверь») |
Вопрос 2 («публичная дискуссия») |
Вопрос 3 («опасение вызвать раздражение») |
Число случаев, N |
Паттерн ответа («+» — «верно», «—» — «неверно»): |
+ |
+ |
+ |
30 |
+ |
+ |
— |
50 | |
+ |
— |
— |
45 | |
— |
— |
— |
10 | |
Всего 135 |
Судя по таблице 6.3, априорное упорядочение вопросов совпало с реальным: самый «легкий» первый вопрос оказался и самым популярным, тогда как на самый «тяжелый» вопрос шкалы положительно ответили лишь 30 опрошенных: нежелание высказывать свою точку зрения требует значительно большего количества «благопристойности», чем привычка стучать в дверь.
Если бы использованный нами исходный порядок вопросов не совпал бы с их реальным ранжированием по числу позитивных ответов, то это само по себе не доказывало бы «нешкалируемости» данной совокупности пунктов: для того, чтобы получить столь же красивую «гутмановскую» картину распределения ответов, как в предыдущей таблице 6.2, было бы достаточно просто переставить столбцы таблицы так, чтобы первым оказался самый популярный вопрос с наибольшим числом положительных ответов и т. д. (Упорядоченную таким образом таблицу обычно называют шкалограммной матрицей, или шкалограммой.)
Реальной проблемой в нашем примере, как и в большинстве случаев построения гутмановской шкалы, стало наличие так называемых нешкальных типов, т. е. таких паттернов ответа, которые попросту не укладываются в логику одномерной модели с монотонно возрастающей вероятностью ответа. Примером «нешкального» паттерна мог бы быть положительный ответ на третий вопрос при отрицательных ответах на первые два вопроса (— — +). То обстоятельство, что некий респондент, бесцеремонно входящий в чужую дверь без стука, боится открыто выразить свое мнение, может быть и случайной ошибкой, и результатом влияния какой-то посторонней переменной: возможно, отвечая на третий вопрос, этот человек думал не о хороших манерах, а о том, что высказывать свое мнение открыто в его привычной среде «невыгодно», недальновидно и т. п. Для того чтобы проверить шкальную гипотезу о том, что данная совокупность вопросов дает хорошее приближение к гутмановской шкале, нам следует трактовать «нешкальные» типы ответа как ошибки и оценить, насколько велико отклонение от идеальной модели. Пусть наш исследователь получил следующее распределение «нешкальных» типов (см. табл. 4).
Разумно предположить, что «нешкальный» тип — — + можно отнести к шкальному типу — — — с одной ошибкой. Второй «нешкальный» паттерн ответа — + + можно рассматривать как отклонение от школьного типа + + + также с одной ошибкой (если бы мы отнесли этот «нешкальный» паттерн к типу — — —, то ошибок было бы две, а не одна). Существуют разные способы оценки приемлемости наблюдаемых отклонений от совершенной шкалы, содержащей лишь шкальные паттерны ответа. Здесь мы воспользуемся самым простым и грубым, рассчитав коэффициент воспроизводимости шкалы Rep (от англ. reproducibility) по следующей формуле:
В нашем примере мы, основываясь на идеальной модели шкалы, можем воспроизвести (предсказать) по три ответа для 143 респондентов. Всего мы сделаем 429 предсказаний для отдельных ответов. Из них 8 ответов окажутся ошибочными (каждая ошибка будет отличаться от ожидаемого ответа только на 1 балл). Коэффициент воспроизводимости составит, таким образом, 0,98 (или 98%).
Таблица 4
Распределение ответов для «нешкальных» типов
Вопросы Ответы |
Вопрос 1 («стук в дверь») |
Вопрос 2 («публичная дискуссия») |
Вопрос 3 («опасение вызвать раздражение») |
Число случаев |
Паттерн ответа: |
— |
— |
+ |
3 |
— |
+ |
— |
5 | |
Всего 8 |
На практике принято считать приемлемым любое значение коэффициента воспроизводимости, которое превышает 0,90 (90%). Очевидно, что 100%-й воспроизводимостью может обладать лишь совершенная гутмановская шкала.
Другие рефераты на тему «Социология и обществознание»:
Поиск рефератов
Последние рефераты раздела
- Стратегии сотрудничества государства и общественного сектора в сфере предоставления социальных услуг
- Навыки общения с клиентом
- Мусульманская община в Северной Европе
- Моральная оценка личности
- Организация, формы и методы социальной работы с пожилыми людьми в условиях сельской местности
- Наркомания среди подростков и молодёжи как социальная проблема
- Организация социальной работы с детьми с ограниченными возможностями здоровья