Многоэтажное производственное здание

Диаметр поперечных стержней примем конструктивно из условий:

dsw≥0.25*ds max (условие свариваемости),

dsw≥5 мм.

Максимальный диаметр ds max=32 мм.

dsw≥0.25*32=8 мм.

Примем dsw=8 мм.

Шаг поперечных стержней примем конструктивно из условий:

S≤15*ds max=15*32=480 мм,

S≤300 мм

Примем S=300 мм.

Принимаем поперечную арматуру колонн

ы диметром dsw=8 мм, с шагом S=300 мм, из арматуры класса A400.

Рис. 5.1. Схема армирования колонны.

5.2 Расчет консоли колонны

Рассчитывается консоль колонны крайнего ряда.

Максимальная опорная реакция ригеля: Q=390.53 кН.

lsup=Q/(Rb*bp)=390.53/(15.3*0.3)=85.08 мм.

Принимаем вылет консоли l=300 мм.

a=l-0.5*lsup=300-0.5*85.08=257.5 мм.

Высота консоли в сечении у грани колонны h=600 мм.

Высота консоли у свободного края h1=300 мм.

Требуемая высота консоли у грани колонны:

h0≥Q/(2.5*Rbt*bcol)=390.53/(2.5*1.08*0.4)=361.6 мм.

Принимаем h0=h-as=600-50=550 мм.

Изгибающий момент в опорном сечении консоли:

M=1.25*Q*(l-Q/(2*Rb*bp))=1.25*390.53*(300-390.53/(2*15.3*0.3))=125.68 кН*м.

Требуемая площадь сечения арматуры класса A400:

As=M/(Rs*(h0-asc))=125.68/(365*(550-50))=688.7 мм2.

Принимаем 3Æ18 A400; (As=763.4 мм2).

Вычисляем параметры консоли:

tgθ=(h0-asc)/(a+0.5*lsup)=(550-50)/(257.5+0.5*85.08)=1.667

θ=59.04˚

sinθ=0.857

cosθ=0.514

Ширина наклонной полосы:

lb=lsup*sinθ+2*5*cosθ=85.08*0.857+2*5*0.514=78.1 мм.

h=600<2,5*257.5=2,5*27=644, консоль армируется только наклонными хомутами по всей высоте.

Суммарная площадь наклонных хомутов (отгибов):

Ainc=[Q/(0.8*Rb*bсol*lb*sinθ)-1]*bсol*Sinc/10*α=

=[390.53/(0.8*15.3*0.4*78.1*0.857)-1]*0.4*150/10*6.897=166.2 мм2,

где Sinc=150 мм – шаг отгибов:

Sinc£h/4=600/4=150 мм;

Sinc£150 мм.

α=6.897.

Ainc=0,002*bсol*h0=0,002*400*550=440 мм2.

Требуемая площадь сечения одного хомута

Ainc1=Ainc/2*n=440/2*3=73 мм2

где n=3 – число пар наклонных хомутов.

По сортаменту подбираем отгибы Æ10 A400 (Ainc1=78.5 мм2).

Горизонтальные хомуты принимаем по конструктивным требованиям: Æ8 A400 с шагом S=150 мм.

Рис. 5.2. Армирование консоли колонны.

5.3 Расчет стыка ригеля с колонной

Максимальный опорный момент: Моп=370.04 кН*м.

Максимальная опорная реакция ригеля: Q=390.53 кН.

Требуемая площадь стыковых стержней колонны:

Askоп=Mвоп/(Rs*zs)=291.93/(365*590)=1355.6 мм2,

где Мвоп=Моп-Q*hcol/2=370.04-390.53*0.4/2=291.93 кН*м;

zs=h0-asс=640-50=590 мм.

Принимаем 2Æ32 A400 и Æ16 A400 (Аs=1809.6 мм2), т.к. диаметры стыковых стержней и выпусков арматуры ригеля одинаковы, то конструкция стыка является равнопрочной с сечением ригеля и не требует проверки расчетом.

Требуемая площадь сечения нижней опорной пластины ригеля (из стали марки C235 по ГОСТ 27772-88 Ry=230 МПа, Rwz=160 МПа):

Апл=N/Ry=494.80*10-3/230=2151.3 мм2;

где N=Мвоп/zs=291.93*106/590=494.80 кН.

Требуемая толщина пластины:

δпл=Апл/bp=2151.3/300=7.2 мм

δпл≥kf/1.2=9/1.2=7.5 мм,

где kf=9 мм – толщина катета шва.

Принимаем пластину сечением 300х8 мм.

Суммарная длина швов:

=1,3*(494.80-58.58)/(0.85*9*160)=241.66 мм;

F=Q*f=390.53*0.15=58.58 кН;

lw1=ålw1/2+10=241.66/2+10=241.66 мм – требуемая длина сварного шва с каждой стороны ригеля к стальной пластине колонны.

l=300 мм>lw1+∆=241.66+50=291.7 мм => величина вылета консоли достаточна.

Рис. 5.3. Стык ригеля с колонной.

6 Проектирование монолитного перекрытия

6.1 Компоновка конструктивной схемы перекрытия из монолитного железобетона

Монолитное перекрытие состоит из монолитной плиты, главных и второстепенных балок. Компоновка конструктивной схемы перекрытия с указанием элементов приведена на рис. 6.1.

Рис. 6.1. Компоновка монолитного перекрытия.

6.2 Расчет и конструирование монолитной плиты

6.2.1 Определение шага второстепенных балок

Принимаем толщину монолитной плиты hпл=60 мм.

Расстояние между второстепенными балками из условия обеспечения жесткости:

L3≤40*hпл=40*60=2400 мм.

Минимальное количество шагов второстепенных балок в одном пролете:

n=L/40*hпл=6400/40*60=2.7, принимаем количество шагов n=3, тогда шаг второстепенных балок: L3=L/n=6400/3=2133 мм

6.2.2 Выбор материалов

Назначаем для плиты тяжелый бетон класса B15: gb2=0.9; Rb=8.5 МПа; Rbt=0.75 МПа, (с учетом gb2 Rb=7.65 МПа; Rbt=0.675 МПа), Rb ser=11 МПа, Rbt ser=1.15 МПа, Eb=23000 МПа, бетон естественного твердения.

При армировании полки плиты раздельными плоскими сетками используется стержневая арматура класса A400: Rs=355 МПа, Rsw=285 МПа, Rs ser=390 МПа, Es=200000 МПа.

Второстепенная балка армируется каркасами из арматуры класса A400: Rs=355 МПа, Rsw=285 МПа, Rs ser=390 МПа, Es=200000 МПа.

6.2.3 Расчет и армирование плиты

Плита рассчитывается на действие нагрузки на полосу шириной 1 м (рис. 6.1.). Расчетная схема плиты принимается как многопролетная неразрезная балка, опорами которой являются второстепенные балки. При вычислении нагрузок на 1 м2 перекрытия использованы результаты сбора нагрузок, приведенные в таблице 1.

Таблица 5.

Вычисление нагрузок на перекрытие

№п/п

Наименование нагрузки

Нормативная нагрузка, кН/м2

Коэффициент надежности по нагрузке, γf

Расчетная нагрузка, кН/м2

1

2

3

4

5

 

ПЕРЕКРЫТИЕ

     

I

ПОСТОЯННАЯ (gпер)

     

1

Собственный вес пола

0.218+0.336+0.410

0.964

1.3

1.115

2

Собственный вес монолитной плиты

1×1×0.06×25×0,95

1.398

1.1

1.538

 

ИТОГО: ågпер=g1+g2

2.362

 

2.652

II

ВРЕМЕННАЯ (Vпер)

     

1

Полезная (V1)

а) кратковременная

б) длительная

14

7

7

1.2

1.05

8.4

7.35

2

Перегородки (V2)

0.5

1.1

0.55

 

ИТОГО: åVпер=V1+V2

14.5

 

16.3

 

ПОЛНАЯ: gпер=ågпер+åVпер

16.862

 

18.952

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13 


Другие рефераты на тему «Строительство и архитектура»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы