Использование индексного метода в таможенной статистике
Рассчитаем индекс физического объема продукции на основе данных таблицы 1:
Физический объем реализации (товарооборота) увеличился на 17,3%.
Как отмечалось ранее, стоимость продукции можно представить как произведение количества товара на его цену. Такая же зависимость существует и между индексами стоимости, ф
изического объема и цен:
, таким образом:
Аналогично рассмотренным выше строятся индексы для показателей, которые являются произведением двух сомножителей:
§ издержек производства (произведение себестоимости единицы продукции на количество продукции);
§ затрат времени на производство всей продукции (произведение затрат времени на производство единицы продукции на количество выработанной продукции).
Помимо агрегатных, в статистике используются и средневзвешенные индексы.
1.2Средние индексы и индексы средних показателей
К их исчислению прибегают тогда, когда имеющаяся в распоряжении информация не позволяет рассчитать общий агрегатный индекс. Например, если отсутствуют данные о ценах, но имеется информация о стоимости продукции в текущий период и известны индивидуальные индексы цен по каждому товару, то нельзя определить общий индекс цен как агрегатный, но можно вычислить его как средний из индивидуальных индексов.
Средний индекс - это индекс, вычисленный как средняя величина из индивидуальных индексов. При исчислении средних индексов используются две формы средних: средняя арифметическая и средняя гармоническая.
Средний арифметический индекс будет тождествен агрегатному индексу, если весами индивидуальных индексов будут слагаемые знаменателя агрегатного индекса. Зависимость для определения среднего арифметического индекса физического объема продукции будет иметь вид:
.
Поскольку iq × q0 = q1 , то формула этого индекса легко преобразуется в полученную ранее
.
Средние индексы широко используются при анализе рынка ценных бумаг. Наиболее известными являются индексы Доу-Джонса и Стэндэрда и Пура.
К индексам средних величин относятся: индекс переменного состава, индекс постоянного состава и индекс структурных сдвигов. Для целей расчета данных индексов составим таблицу 2.
Таблица 2
Реализация товара А в двух регионах
Регион |
Сентябрь |
Октябрь | ||
цена, руб.
|
продано, тыс. шт.
|
цена, руб.
|
продано, тыс. шт.
| |
1 2 |
16 22 |
130 260 |
17 25 |
234 117 |
Источник: составлена автором
1.2.1 Индекс переменного состава, индекс постоянного состава и индекс структурных сдвигов
Индексом переменного состава называется индекс, выражающий соотношение средних уровней изучаемого явления, относящихся к разным периодам времени. Индекс переменного состава отражает изменение не только индексируемой величины (в данном случае — себестоимости), но и структуры совокупности (весов).
Рассмотрим Таблицу 2, так как в данном случае реализуется один и тот же товар, вполне правомерно рассчитать его среднюю цену за сентябрь и за октябрь. Сравнением полученных средних значений получают индекс цен переменного состава:
Расчет по данным таблицы 2 будет выглядеть следующим образом:
Из таблицы видно, что цена в каждом регионе в октябре по сравнению с сентябрем возросла. В целом же средняя цена снизилась на 1,7%. Такое несоответствие объясняется влиянием изменения структуры реализации товаров по регионам: в сентябре по более высокой цене продали товара вдвое больше, в октябре ситуация принципиально изменилась (в данном условном примере для наглядности числа подобраны таким образом, чтобы это различие в структуре продаж было очевидным). Оценить воздействие этого фактора можно с помощью индекса структурных сдвигов:
;
Первая формула в этом индексе позволяет ответить на вопрос, какой была бы средняя цена в октябре, если бы цены в каждом регионе сохранились на прежнем сентябрьском уровне. Вторая часть формулы отражает фактическую среднюю цену сентября. В целом по полученному значению индекса мы можем сделать вывод, что за счет структурных сдвигов цены снизились на 10,0%.
Последним в данной группе средних величин является индекс цен фиксированного состава, который не учитывает влияние структуры, другими словами — это индекс, исчисленный с весами, зафиксированными на уровне одного какого-либо периода, и показывающий изменение только индексируемой величины:
Итак, если бы структура реализации товара А по регионам не изменилась, средняя цена возросла бы на 9,3%. Однако, влияние на среднюю цену первого фактора оказалось сильнее, что отражается в следующей взаимосвязи:
=
Аналогично строятся индексы структурных сдвигов, переменного и фиксированного состава для анализа изменения себестоимости, трудоемкости и пр.
1.3 Динамические и территориальные индексы
По базе сравнения индексы бывают динамические и территориальные. Динамические индексы служат для характеристики изменения явления во времени. При исчислении динамических индексов происходит сравнение значения показателя в отчетный период со значением этого же показателя за предыдущий период, который называют базисным. Динамические индексы бывают базисные и цепные. Для вычисления индексов, как и всякой другой относительной величины, необходимо иметь данные за два периода, или два сравниваемых уровня.
Другие рефераты на тему «Таможенная система»:
- Таможенное декларирование
- Совершенствование системы таможенного регулирования перемещения культурных ценностей физическими лицами через таможенную границу Российской Федерации
- Система таможенных органов Российской Федерации
- Таможенные преступления как угроза экономической безопасности страны
- Таможенное дело
Поиск рефератов
Последние рефераты раздела
- Акцизы и их взимание таможенными органами
- Алгоритм выполнения операций с импортными грузами
- Ввоз и вывоз товаров на таможенную территорию России
- Введение специальной пошлины на импорт стеклосеток
- Валютное регулирование
- Анализ информационного обеспечения управления таможенной деятельностью
- Анализ системы взаимодействия таможенных органов Федеральной службы по надзору РФ