Распространение пламени в гибридных смесях уголь-метан-воздух
Поскольку основная часть одностадийной волны горения с узкой реакции приходится на прогретый слой, то величина одновременно характеризует размер всей волны горения. Таким образом, характерный размер волны горения lb равен .
Интегральная кривая уравнения (1.18) в сл
учае узкой зоны реакции качественно изображена на рис 2 (кривая 1). Линейный рост в зоне прогрева сменяется резким падением в узкой зоне реакции(q=0 при T=Tb).
Можно показать, что в зоне реакции мало второе слагаемое в (1.18) (в среднем по зоне реакции порядок величины отношения второго слагаемого к первому составляет (Т-Тb)/(Tb-T0). Пренебрегая вторым слагаемым в (1.18) и интегрируя, получим для зоны реакции:
(1.23)
Зависимость q(T) по (1.23) показана на рис 2 кривой 3.Поскольку за пределами зоны реакции Ф(Т, аi) очень мала, то величина интеграла (1.23) практически перестаёт зависеть от нижнего предела, и кривая 3 насыщается в области низких температур. Поэтому для того, чтобы оценить по (1.23) значение q на границе между зонами прогрева и реакции можно в качестве нижнего предела интегрирования выбрать любое значение Т<Тr, в частности Т=Т0. Сращивая (1.20) и (1.23) (ввиду узости зоны реакции для вычисления значения q на границе зон прогрева и реакции в (1.20) можно приближённо принять Т≈Тb), получим основную формулу для скорости горения в приближении узкой зоны реакции:
(1.24)
Подчеркнём, что величина интеграла (1.24) не зависит (в рассматриваемом приближении) от нижнего предела интегрирования, поскольку Ф(Т,ai) заметно отличается от нуля только в области высоких температур вблизи температуры горения Тb [5].
1.1.2 Воспламенение газовых смесей и скорость распространения пламени.
Для того, чтобы могли протекать реакции горения, необходимо создать условия для воспламенения смеси топлива и окислителя.
Воспламенение может быть самопроизвольным и вынужденным. Под самовоспламенением понимается такое прогрессирующее самоускорение химической реакции, в результате которого медленно протекающий в начальной стадии процесс достигает больших скоростей и на завершающей стадии протекает мгновенно.
Вынужденное воспламенение (зажигание) обусловлено внесением в реагирующую смесь источника теплоты, температура которого выше ее температуры воспламенения. Газовоздушная смесь, не воспламеняющаяся при низкой температуре, может воспламениться при повышенной температуре, когда создаются благоприятные условия для возникновения активных центров в результате потери устойчивости сложных исходных молекул веществ.
Процесс воспламенения характеризуется тем, что имеются определенные границы (пределы), вне которых воспламенение не наступает ни при каких условиях. Известно, что газовоздушные смеси воспламеняются только в том случае, когда содержание газа в воздухе находится в определенных (для каждого газа) пределах. При незначительном содержании газа количество теплоты, выделившейся при горении, недостаточно для доведения соседних слоев смеси до температуры воспламенения, т.е. для распространения пламени. То же наблюдается и при слишком большом содержании газа в газовоздушной смеси. Недостаток кислорода воздуха, идущего на горение, приводит к понижению температурного уровня, в результате чего соседние слои смеси не нагреваются до температуры воспламенения. Этим двум случаям соответствуют нижний и верхний пределы воспламеняемости. Для метана нижний предел воспламеняемости в воздухе составляет 5,3%, верхний-14,0%. Смесь метана с кислородом: нижний предел 5,1%, а верхний 61%. Поэтому кроме перемешивания газа с воздухом в определенных пропорциях должны быть созданы начальные условия для воспламенения смеси.
Температура воспламенения газа зависит от ряда факторов, в том числе от содержания горючего газа в газовоздушной смеси, давления, способа нагрева смеси и т.д., и поэтому не является однозначным параметром. Температура воспламенения метана в воздухе составляет от 545 до 850 оС.
В практике встречаются два способа воспламенения горючих смесей: самовоспламенение и зажигание. При самовоспламенении весь объем горючей газовоздушной смеси постепенно путем подвода теплоты или повышения давления доводится до температуры воспламенения, после чего смесь воспламеняется уже без внешнего теплового воздействия. В технике широко применяется второй способ, именуемый зажиганием. При этом способе не требуется нагревать всю газовоздушную смесь до температуры воспламенения, достаточно зажечь холодную смесь в одной точке объема каким-нибудь высокотемпературным источником (искра, накаленное тело, дежурное пламя и т.д.). В результате воспламенение передается на весь объем смеси самопроизвольно путем распространения пламени происходящего не мгновенно, а с определенной пространственной скоростью. Эта скорость называется скоростью распространения пламени в газовоздушной смеси и является важнейшей характеристикой, определяющей условия протекания и стабилизации горения.
Пределы воспламенения газовоздушных смесей расширяются в повышением температуры, влияние же давления носит более сложный характер. Повышение давления выше атмосферного для некоторых смесей (например, водорода с воздухом) сужает пределы воспламенения, а для других (смесь метана с воздухом) расширяет. При давлении ниже атмосферного верхний и нижний пределы сближаются, т.е. концентрационные пределы воспламенения сужаются.
Условиями осуществления вынужденного воспламенения являются: наличие эффективного источника зажигания и способность образовавшегося фронта пламени самопроизвольно перемещаться (распространяться) в объеме газовоздушной смеси. Этот процесс носит название распространения пламени.
Различают два режима стационарного распространения пламени: в покоящейся или ламинарно движущейся среде и в турбулентном потоке. Первый носит название нормального распространения пламени, а второй – турбулентного.
1.2 Ламинарное пламя в пылях.
Анализ проблемы ламинарного пламени в газовзвесях основывается на подходах, развитых применительно к горению газофазных систем [2] и учитывает целый ряд присущих взвесям особенностей. Это, в первую очередь -отличия в температурах и скоростях конденсированной и газовой компонент, закономерности воспламенения и горения частиц в волне горения. Указанные особенности обуславливают существование в газовзвесях более широких, в сравнении с газами, фронтов горения и наличие значительных радиационных потоков.
В связи с этим, с нашей точки зрения, принципиально важными для ламинарного режима являются взаимосвязанные вопросы о механизме передачи тепла в предпламенную зону и о возможности использования применительно к газовзвесям понятия нормальной (фундаментальной) скорости пламени. Нормальная скорость пламени определяет объем горючей смеси, поступающий в единицу времени на единицу поверхности фронта пламени и в случае искривленных фронтов характеризует скорость перемещения фронта пламени по нормали к его поверхности. Для газовзвесей введение нормальной скорости оправдано в том случае, когда ширина предпламенной зоны ln и ширина зоны горения lr = vмного меньше радиуса кривизны фронта пламени, сопоставимого с размерами экспериментальной установки (для труб -диаметр трубы, для горелок - диаметр устья).
Другие рефераты на тему «Физика и энергетика»:
Поиск рефератов
Последние рефераты раздела
- Автоматизированные поверочные установки для расходомеров и счетчиков жидкостей
- Энергосберегающая технология применения уранина в котельных
- Проливная установка заводской метрологической лаборатории
- Источники радиации
- Исследование особенностей граничного трения ротационным вискозиметром
- Исследование вольт-фарадных характеристик многослойных структур на кремниевой подложке
- Емкость резкого p-n перехода