Анализ линейных стационарных объектов
2. Анализ нелинейных стационарных объектов
Цель работы: исследовать параметры нелинейных стационарных объектов, описываемых системами нелинейных алгебраических уравнений, используя для их решения средства пакета MathCAD.
Содержание работы:
1) изучить теоретические положения (раздел 2.1), раскрывающие структуру нелинейных стационарных объектов, и
х математическое описание и пример решения систем нелинейных алгебраических уравнений средствами пакета MathCAD, используемый для анализа такого рода объектов;
2) выполнить индивидуальное задание согласно предусмотренной в разд.2.2 последовательности выполнения работы;
3) оформить описание раздела по контрольной работе согласно требованиям задания.
2.1. Краткие теоретические сведения
Структура и математическая модель объекта
Структурная схема нелинейного стационарного объекта имеет вид:
|
|
|
Такой объект представляет собой систему, которая имеет два входа х1 и х2 с постоянными значениями в установившемся режиме и два выхода в1 и в2. Структура объекта определяется сумматором S1 , умножителем М1, двумя линейно– усилительными блоками а1 , а2 и системой связей между ними.
В отличие от линейных стационарных объектов нелинейные описываются системами нелинейных алгебраических уравнений.
Математическая модель, соответствующая такой схеме, имеет вид:
а1х1 +а2х2=в1;
х1х2=в2
2.1.2. Анализ объектов
Исследование такого рода объектов состоит в определении значений входных воздействий х1 ,х2 в зависимости от значений выходов в1 и в2 при заданных параметрах объекта а1 и а2 .
Реализация решения задачи исследования нелинейного стационарного объекта в такой постановке может быть осуществлена с помощью средств системы символьной математики MathCAD 7.0 PRO .
2.1.3. Решение нелинейных алгебраических и трансцендентных уравнений
2.1.3.1. Постановка задачи.Пусть дано уравнение
, (2.1)
где функция определена и непрерывна на некотором интервале (А,В). Всякое значение , обращающее функцию в нуль, то есть такое, при котором , называется корнем уравнения (2.1), а процесс нахождения называется его решением.
Если функция представляет собой многочлен относительно , то уравнение называется нелинейным алгебраическим (например, ); если в функцию входят элементарные (тригонометрические, логарифмические, показательные и т.п.) функции, то такое уравнение называется трансцендентным (например, ).
2.1.3.2. Характеристика методов. Методы решения нелинейных алгебраических и трансцендентных уравнений (НАТУ) делятся на прямые и итерационные. Первые позволяют найти решение непосредственно с помощью формул и всегда обеспечивают получение точного решения. Однако прямые методы имеются только для ограниченного круга уравнений, поэтому на практике более широко используются итерационные методы.
В итерационных методах процедура решения задается в виде многократного применения некоторого алгоритма. Полученное решение всегда является приближенным, хотя может быть сколь угодно близким к точному.
В общем случае задача решается в 2 этапа:
определение приближенных значений корней уравнения;
уточнение корней до заданной степени точности с помощью одного из итерационных методов.
Для определения приближенных значений корней уравнения используются:
1) Построение графика функций и приближенное определение точек, где кривая пересекает ось Х.
Запись уравнения в виде и построение графиков двух функций: и . Точка их пересечения и есть корень исходного уравнения (5.1).
На втором этапе происходит уточнение корня с использованием критерия окончания итерационного процесса.
Итерационный процесс следует оканчивать, когда < , т.е. при близости двух последовательных приближений к корню.
Одним из итерационных методов для уточнения корня является метод Ньютона.
2.1.3.3. Метод Ньютона
2.1.3.3.1. Геометрическая интерпретация метода Ньютона.
Приняв в качестве начального приближения к корню некоторое значение , восстанавливаем перпендикуляр в точке к оси Х. В точке пересечения перпендикуляра с графиком функции , для которой отыскивается нуль, проводим касательную к кривой. Точка пересечения касательной с осью Х дает новое приближение к корню. После этого процесс повторяем для точки , получаем точку и т.д.
2.1.3.3.2. Получение формулы Ньютона. Определим рекуррентное соотношение для нахождения корня методом Ньютона.
Другие рефераты на тему «Программирование, компьютеры и кибернетика»:
Поиск рефератов
Последние рефераты раздела
- Основные этапы объектно-ориентированного проектирования
- Основные структуры языка Java
- Основные принципы разработки графического пользовательского интерфейса
- Основы дискретной математики
- Программное обеспечение системы принятия решений адаптивного робота
- Программное обеспечение
- Проблемы сохранности информации в процессе предпринимательской деятельности