Порядок и хаос
Если налить на сковороду тонкий слой какой-нибудь вязкой жидкости (например, растительного масла) и нагревать сковороду на огне, поддерживая температуру масляной поверхности постоянной, то при слабом нагреве – малых тепловых потоках – жидкость остается спокойной и неподвижной. Это типичная картина состояния, близкого к равновесному порядку. Если сделать огонь побольше, увеличивая тепловой поток
, то через некоторое время – совершенно неожиданно – вся поверхность масла преображается: она разбивается на правильные шестигранные или цилиндрические ячейки. Структура на сковороде становится очень похожей на пчелиные соты. Это замечательное превращение называется явлением Бенара, по имени французского исследователя, одним из первых изучившего конвективную неустойчивость жидкости.
Конвективные ячейки Бенара. В 1900 году была опубликована статья французского исследователя Бенара с фотографией структуры, по виду напоминавшей пчелиные соты. При нагревании снизу слоя ртути, налитой в плоский широкий сосуд, весь слой неожиданно распадался на одинаковые вертикальные шестигранные призмы, которые впоследствии были названы ячейками Бенара. В центральной части каждой ячейки жидкость поднимается, а вблизи вертикальных граней опускается. Иными словами, в сосуде возникают направленные потоки, которые поднимают нагретую жидкость (с температурой T1) вверх, а холодную (с температурой T2) опускают вниз.
Если и дальше увеличивать тепловой поток, то ячейки разрушаются – происходит переход от порядка к хаосу (П→Х). Но самое удивительное заключается в том, что при еще больших тепловых потоках наблюдается чередование переходов:
Х→П→Х→П→ .!
При анализе этого процесса в качестве параметра, который показывает, когда на сковороде будет «порядок» и когда «хаос», то есть определяющего «зону» порядка или хаоса, выбирается так называемый критерий Рэлея, пропорциональный разности температур вверх по слою масла. Этот параметр называют управляющим, поскольку он «управляет» переводом системы из одного состояния в другое. При критических значениях Рэлея (математики называют их точками бифуркации) и наблюдаются переходы «порядок – хаос».
Нелинейные уравнения, которыми описывается образование и разрушение структур Бенара, называются уравнениями Лоренца. Они связывают между собой координаты фазового пространства: скорости потоков в слое, температуру и управляющий параметр.
Процессы, происходящие в сосуде, могут быть зафиксированы, например, киносъемкой и сопоставлены с результатами вычислительного эксперимента. На рис. 2, 3 показано именно такое сопоставление. Совпадение результатов физического и вычислительного экспериментов поразительно! Но прежде, чем перейти к анализу этих результатов, нам придется еще раз обратиться к фазовому пространству.
Рис. 2
Переходы от порядка к хаосу на примере явления Бенара. Управляющим параметром, который играет роль «ручки регулировки», здесь служит так называемый критерий Рэлея (Re), пропорциональный разности температур вверх по слою жидкости. «Вращение» этой регулирующей ручки соответствует большему или меньшему нагреву жидкости. При слабом нагреве (Re < 1) в слое нет конвективных потоков, и динамическая система, образом которой служит изображающая точка в фазовом пространстве, стремится к состоянию равновесного порядка. С увеличением разности температур между сковородкой и внешней поверхностью жидкости (Re ≈ 1) возникают малые конвективные токи. Это состояние соответствует неравновесному порядку.
Рис. 3
«Вращая» дальше ручку регулировки (Re ≈ 10 .20), мы приходим к неравновесному порядку с аттрактором типа устойчивого фокуса – это в вычислительном эксперименте, на экране дисплея или на графопостроителе. А в физическом эксперименте отчетливо наблюдаются ячейки Бенара.
Интересна динамика процесса с ростом числа Рэлея. Расстояния между «оборотами» фазовой траектории (их обычно называют ветвями) постепенно сокращаются, и в конце концов изменяется характер аттрактора – фокус переходит в предельный цикл, который потому и называется предельным, что служит пограничной кривой между зонами устойчивости и неустойчивости; теперь даже при очень малом увеличении управляющего параметра начинают образовываться турбулентные вихри. Порядок переходит в хаос. В вычислительном эксперименте возникает неустойчивый фокус, а затем появляется странный аттрактор. В физическом эксперименте ячейки Бенара разрушаются, этот процесс напоминает кипение.
Почему фазовое пространство оказалось таким мощным средством для изучения хаоса? Прежде всего потому, что оно позволяет представить поведение нелинейной, «хаотической» системы в наглядной геометрической форме. Так, поведение большинства нелинейных систем в фазовом пространстве определяется некоторой зоной в нем, называемой аттрактором (от английского to attract – притягивать). В эту зону в конечном итоге «притягиваются» траектории, изображающие ход процесса.
Странный аттрактор – абстрактное понятие, введенное для описания хаотического состояния. Универсального и наглядного образа странного аттрактора, к сожалению, не существует. Можно, однако, сконструировать детскую игрушку, представляющую собой многослойный лабиринт (трехмерное фазовое пространство), по которому бегает шарик (изображающая точка). В плоскостях между слоями имеются дырки, натыкаясь на которые шарик проваливается вниз. Однако эти дырки не находятся на одной вертикали, и поэтому шарик не может проскочить через всю структуру насквозь. Чтобы его траектория прошла с верхней плоскости до нижней, шарик должен описывать причудливые орбиты, пока не наткнется на отверстие, ведущее в соседнюю плоскость. Такая игрушка – грубая модель странного аттрактора.
Как выяснили математики, существуют два вида аттракторов: первый связан с неравновесным порядком и отображается в фазовом пространстве точкой («фокус»), либо замкнутой кривой («предельный цикл»), второй – с образованием детерминированного хаоса и отображается ограниченной областью фазового пространства, заполненной непрерывно развивающейся во времени траекторией («странный аттрактор»).
Для аттракторов первого вида траектории процесса развиваются следующим образом. Если система устойчива, траектория исходит из начальной точки и заканчивается либо фокусом (устойчивый фокус), либо предельным циклом (устойчивый предельный цикл). Если система неустойчива, траектория начинается либо фокусом (неустойчивый фокус), либо предельным циклом (неустойчивый предельный цикл) и постепенно удаляется от своего аттрактора.
Если же процесс отображается «странным аттрактором», то траектория его эволюции начинается из начальной точки и постепенно заполняет некоторую область фазового пространства. Так что переходы «порядок – хаос» в терминах аттракции означают переход от аттрактора первого вида (либо фокус, либо предельный цикл) к аттрактору второго вида («странный аттрактор»).
Другие рефераты на тему «Физика и энергетика»:
Поиск рефератов
Последние рефераты раздела
- Автоматизированные поверочные установки для расходомеров и счетчиков жидкостей
- Энергосберегающая технология применения уранина в котельных
- Проливная установка заводской метрологической лаборатории
- Источники радиации
- Исследование особенностей граничного трения ротационным вискозиметром
- Исследование вольт-фарадных характеристик многослойных структур на кремниевой подложке
- Емкость резкого p-n перехода