Относительная скорость инерциальных систем

Способы отображения

Явление связано с отображением характеристик реального процесса или характеристик материального объекта в систему отсчета наблюдателя. В физике в основном используются два вида отображений.

Классическое отображение. Со школьной скамьи, решая физические задачи механики, мы привыкли к тому, что положение тела в пространстве в данный момент вре

мени отображается объективно (без каких либо искажений). Такое отображение опирается по своей сути на «мгновенное взаимодействие» (мгновенную передачу информации). Оно никогда и ни у кого не вызывало подозрений в некорректности, хотя никто и никогда не предлагал физической модели реализации этого способа.

Отображение с помощью световых лучей. Такой способ отображения предметов и процессов для человека является основным, поскольку мы постоянно используем для этой цели свое зрение. В отличие от классического способа световые лучи могут передавать информацию с искажениями. Например, мы пользуемся лупой для увеличения изображения объекта. Это связано с искажениями фронта волны. Кривые зеркала в «комнате смеха» также пример искажений фазового фронта световой волны. Помимо этого, движение источника светового сигнала относительно наблюдателя обуславливает явление аберрации и эффект Доплера. Таким образом, информация, доставляемая световыми лучами, может быть искажена, т.е. принимаемая информация не всегда соответствует информации, посланной источником сигнала. Она может существенно отличаться от информации, получаемой классическим способом отображения.

Однако оба способа не являются независимыми. Мы, зная скорость относительного движения систем отсчета, направление светового потока и т.д., всегда можем сделать переход от одного вида отображения к другому. Например, учитывая скорость распространения световых лучей, мы можем перейти от классического способа отображения к отображению явления световыми лучами. И обратно, можно всегда перейти от отображения световыми лучами к классическому отображению явлений.

Примером может служить явление аберрации. Видимое положение движущегося объекта – явление, получаемое с помощью световых лучей. Однако существует действительное или истинное положение этого объекта. Угол между действительным и истинным положением есть угол аберрации. Нетрудно понять, что скорость видимого движения и скорость действительного движения могут не совпадать друг с другом! Заметим, что действительное положение объекта и его действительная скорость соответствуют мгновенной передаче информации.

Как известно, ни один «мысленный эксперимент» А. Эйнштейна не обходится без световых лучей. Это не случайно. Сейчас наша задача будет состоять в том, чтобы проанализировать вывод преобразования Лоренца, предложенный Эйнштейном.

В своей работе «К электродинамике движущихся тел» [5] он устанавливает связь между двумя инерциальными системами следующим образом: «Если мы положим x’ = x – vt …». Здесь x, x’ – координаты двух систем, которые движутся друг относительно друга со скоростью v.

Кажется очевидной «правомерность» такого введения скорости относительного движения v в специальной теории относительности. Но это только «кажется». Как измерить эту скорость и каков ее действительный физический смысл? Измерить скорость v можно несколькими способами. Рассмотрим один из них [6].

Пусть в некоторой инерциальной системе покоится источник, который излучает световые импульсы через равные промежутки времени Т. В инерциальной системе отсчета, где находится неподвижный наблюдатель, этот источник будет двигаться относительно наблюдателя с некоторой постоянной скоростью вдоль оси х. Поскольку относительная скорость инерциальных систем отсчета постоянна, неподвижный наблюдатель будет видеть вспышки, причем точки вспышек будут располагаться на равном расстоянии L друг от друга. Измеряя время между соседними вспышками (tn – tn-1), и зная, что расстояние между ними равно L, он может вычислить скорость для различных участков оси х.

Рис. 1

Оказывается, что эта скорость v = L / (tn – tn-1) не будет постоянной. Она будет убывать по мере движения источника световых вспышек вдоль оси х мимо наблюдателя, поскольку

t2 – t1 < t3 – t2 < t4 – t3 < … < t7 – t6 .

Причина в том, что длительность интервала времени между соседними вспышками искажена эффектом Доплера. Вычисленная таким способом скорость, не может являться действительной скоростью относительного движения инерциальных систем отсчета. Это кажущаяся (наблюдаемая, измеряемая) скорость относительного движения инерциальных систем отсчета (явление).

Только когда мы исключим эффект Доплера, мы сможем вычислить действительную скорость относительного движения инерциальных систем отсчета V. Она будет равна отношению V = L / T, и уже не будет зависеть от выбора места измерения этой скорости на оси х [6]. Скорость V есть действительная скорость относительного движения (характеристика сущности). Она соответствует мгновенной передаче информации от объекта наблюдения к субъекту.

Итак, хотя вывод преобразования Лоренца проведен Эйнштейном формально правильно, он дал неправильную интерпретацию скорости v, которая вошла в преобразование Лоренца. Он истинную скорость относительного движения инерциальных систем отсчета V подменил кажущейся скоростью v (явлением). При этом кажущаяся скорость соответствует случаю, когда световые лучи от источника направлены к наблюдателю перпендикулярно траектории движения источника. Вновь мы сталкиваемся со старой гносеологической ошибкой - подменой сущности явлением.

В теории относительности много «парадоксов» (логических противоречий). Если подробно рассмотреть эти «парадоксы», нетрудно заметить, что все они имеют единую структуру [7]. Пока существует один наблюдатель, результаты преобразования Лоренца имеют «объяснение». Но как только появляется второй наблюдатель, между заключениями этих наблюдателей возникает противоречие (конфликт). Примером тому может служить известный «парадокс» близнецов. Внутри специальной теории относительности он не имеет логически непротиворечивого объяснения. Поэтому для его «объяснения» автору пришлось использовать совершенно иную теорию – Общую теорию относительности.

Переосмысление основ теории относительности

1. До появления уравнений Максвелла (1864 г.) законы механики и электродинамики (законы Ньютона, Кулона, Ампера и др.) удовлетворяли принципу относительности Галилея:

«Механический эксперимент дает одинаковые результаты в неподвижной лаборатории (системе отсчета) и в любой лаборатории, которая движется равномерно и прямолинейно относительно первой».

Иными словами, законы природы и уравнения, описывающие их, не должны меняться при преобразованиях Галилея:

x' = x - Vt ; y' = y ; z' = z ; t' = t

где V - относительная скорость движения двух инерциальных систем отсчета (лабораторий), направленная вдоль оси x, т.е. галилеевская скорость относительного движения.

Страница:  1  2  3  4  5 


Другие рефераты на тему «Физика и энергетика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2025 - www.refsru.com - рефераты, курсовые и дипломные работы