Изучение скорости горения высокоэнергетических смесевых твердых топлив
Смесевые топлива имеют ряд преимуществ перед двухосновными. Они дешевле, технологичнее, позволяют создавать заряды, плотно прилегающие к оболочке; при наличии металлических добавок они обеспечивают больший удельный импульс; наконец, они позволяют путем изменения рецептуры получить более широкий диапазон изменения свойств топлива.
Иногда применяются твердые топлива смешанного типа, включающи
е в себя элементы как смесевых, так и двухосновных топлив. Для примера укажем на состав топлива двигателя одной из баллистических ракет; перхлорат аммония, нитроглицерин, нитроцеллюлоза, алюминиевый порошок.[1,стр.57-59]
Несмотря на многообразие существующих и разрабатываемых в иностранных лабораториях составов, смесевые топлива, как правило, содержат следующие вещества (по весу):
Окислители (перхлорат калия, нитрат аммония)……………… 60-80%
Горюче-связующие вещества (каучуки, полиуретаны)…………25-15%
Алюминий (в виде порошка)………………………………………10-5%
Катализаторы и другие специальные вещества………………….до 5%.
Нитрат аммония (аммиачная селитра) NH4NO3- белый кристаллический порошок с удельным весом 1,7г/см3. Разлагается при нагревании выше 170°С. Очень гигроскопичен. Способен гореть и взрываться. При горении выделяется большое количество только газообразных продуктов.[2,стр.22,26]
1.1.4 Физические свойства
Плотность топлив является ответственной их характеристикой и всегда контролируется при производстве топлив.
Пониженная плотность топлив говорит о том, что в топливе имеются поры и пустоты, недопустимые для качественных зарядов топлив. Пониженная плотность сказывается и на скорости горения топлива: с уменьшением плотности она увеличивается и наоборот.
К теплофизическим характеристикам относятся удельная теплоемкость Сp, коэффициент теплопроводности λ и коэффициент температуропроводности α. Эти величины характеризуют способность топлив воспринимать тепло при воздействии температуры и проводить (распространять) его по толщине топлива. Они используются при теоретических расчетах термических напряжений зарядов, скрепленных с камерой двигателя, скоростей горения топлив в двигателях.
Изменение физических свойств топлив при хранении происходит под влиянием изменения внешней температуры, влаги и времени.[2,стр.42]
На поверхности ультрадисперсных частиц происходит радикальная перестройка расположения атомов и изменения типа межатомных связей по сравнению с поверхностью крупных частиц.[3].
В ультрадисперсных частицах реализуется особый тип дальнего порядка, при котором межатомные расстояния закономерно изменяются при переходе от центра частицы к ее поверхности, что приводит к образованию множества дефектов как на поверхности частицы, так и в ее объеме и увеличивает активность такой системы в целом.
1.1.5 Механизм горения
В механизме горения смесевых топлив имеется ряд особенностей, определяемых составом и природой входящих в них веществ.
Горение смесевых топлив начинается в твердой фазе с термического распада окислителей и горюче-связующих веществ. Завершается процесс горения в газовых фазах за счет интенсивных химических реакций между газообразными продуктами термического распада компонентов.
Для горения смесевых топлив наиболее характерны большие температуры поверхности горения (до 500-600ºС) и более близкие к поверхности горения максимальные температуры горения.
Процесс горения твердых ракетных топлив очень чувствителен к внешним воздействиям - давлению и начальной температуре топлива. При повышении давления и температуры резко сокращаются темная и смешанная зоны, и пламенная зона вплотную подходит к поверхности горения. Увеличивается подвод тепла к поверхности горения, скорость горения растет, а зона прогрева сужается. Чтобы избежать этих неблагоприятных условий, применяют катализаторы горения, ускоряющие химические реакции в твердой и газовой фазах, которые способствуют более полному горению и в конечном итоге улучшают характеристики топлив.[2,стр.58-59]
Введение АI в топливные системы, содержащие органическое горючее и неорганический окислитель, способствует повышению воспламеняемости, скорости горения и оказывает влияние на зависимость скорости горения от давления.
1.1.6 Скорость горения топлив
Для количественной оценки процесса горения топлив используют либо скорость перемещения фронта горения, либо массу топлива, сгорающего в единицу времени с единицы поверхности.
В первом случае скорость горения называют линейной и выражают в мм/сек или см/сек, во втором – массовой и выражают в г/см2*сек. В практике чаще пользуются линейной скоростью горения.
Скорость горения является очень важной рабочей характеристикой топлива, так как по ней судят о количестве газов, которые образуются при горении топлива в единицу времени с поверхности заряда. Она является одним из основных параметров при проектировании зарядов топлив.
Скорость горения топлива зависит от давления в двигателе, начальной температуры топлива, его плотности, энергетических характеристик, природы составных частей топлива, размера частиц окислителя (в смесевых топливах) и катализаторов горения.
Для практических целей всегда необходимо знать, прежде всего, зависимость скорости горения от давления.
Зависимость скорости горения твердых топлив от давления определяют опытным путем и выражают формулами, которые получили наименование законов скорости горения. Закон скорости горения находится опытным путем для каждого топлива в желаемом диапазоне давлений.[2,с 59-60]
1.1.7 Элементарный состав
Условная химическая формула.
Состав вещества в массовых долях отдельных элементов называется элементарным составом. Общая формула для массовой доли отдельного(k-го) элемента в веществе имеет вид:
bk= ;
здесь bk – массовая доля k-го элемента;
ak - число атомов данного элемента в молекуле рассматриваемого соединения;
Ak- атомная масса этого элемента;
Если ограничиться пока элементами H, C, N и О, то в общем случае химическая формула вещества имеет вид
CmHnOpNq.
Тогда элементарный состав будет
bc=; bh=; bo=; bn=.
Здесь µ=12m+n+16p+14q – молекулярная масса вещества;
bc, bh, bo, bn – доли углерода, водорода, кислорода и азота.
Для углерода и водорода приняты округленные значения атомных масс (µн=1, µс=12);
Если топливо или его компонент представляет собой комбинацию нескольких веществ, то массовая доля отдельного элемента найдется так:
bk=Σgibki
где bk – массовая доля k – го элемента в смеси,
gi - массовая доля отдельного (i–го) вещества в смеси,
bki – массовая доля k – го элемента в i- м веществе;
Если топливо состоит из окислителя и горючего и известно соотношение компонентов æ элементарный состав обоих компонентов, то массовая доля отдельного (k – го) элемента в топливе найдется так:
Другие рефераты на тему «Физика и энергетика»:
- Анализ зависимости условного периода, логарифмического декремента затухания и добротности контура от его параметров (L,C,R)
- Устройства противоаварийной автоматики
- Исследование нелинейных цепей постоянного тока
- Работы М. Фарадея по электричеству
- Расчет симметричных и несимметричных коротких замыканий в электроэнергетической системе
Поиск рефератов
Последние рефераты раздела
- Автоматизированные поверочные установки для расходомеров и счетчиков жидкостей
- Энергосберегающая технология применения уранина в котельных
- Проливная установка заводской метрологической лаборатории
- Источники радиации
- Исследование особенностей граничного трения ротационным вискозиметром
- Исследование вольт-фарадных характеристик многослойных структур на кремниевой подложке
- Емкость резкого p-n перехода