История поиска путей учета рефракционных искажений в высокоточных инженерно-геодезических измерениях

Плотность воздуха, а вместе с тем и показатель преломления с высотой постепенно уменьшаются. Это хорошо понимал вели­кий английский ученый Исаак Ньютон (1643-1727).

Ньютон внес исключитель­но большой вклад в развитие теории астрономической рефракции света. К сожалению, он не включил свои исследования в этой области ни в «Лекции по оп­тике», ни в «Оптику». Чрезвычайно щепетильный в вопросах

научной публикации Ньютон явно недооце­нивал значения вычисленных им таблиц рефракции света. В одном из его писем, относящихся к 1695 г., можно встретить такие строки: «Я не имею намере­ния писать о рефракции и не желаю, чтобы таблица рефракции была распространяема».[3] Сегодня мы мо­жем познакомиться с исследованиями Ньютона по рефракции света лишь благодаря счастливой случай­ности. Дело в том, что более чем через сто лет после смерти великого ученого, в 1832 г. на чердаке одного из домов Лондона были обнаружены 27 писем Нью­тона к Флемстиду. Флемстнд занимался астрономи­ческими наблюдениями на обсерватории в Гринвиче; он имел звание «королевского астронома».

В середине 90-х годов Ньютон изложил в письмах к Флемстиду некоторые теоремы, касающиеся теории рефракции света в ат­мосфере, а также первоначальную и более точную таблицы рефракции, где для разных значений зенит­ного расстояния были вычислены углы рефракции.

Переписка Ньютона с Флемстидом была издана в 1835 г. английским Адмиралтейством. В 30-х годах нашего столетия эту книгу совершенно случайно при­обрел выдающийся советский ученый в области кораблестроения А. Н. Крылов. Академик А. Н. Кры­лов хорошо знал творчество Ньютона; он сделал прекрасный перевод на русский язык ньютоновых «Математических начал натуральной философии». Используя письма Ньютона к Флемстиду и применяя только те математические средства, которыми распо­лагал в свое время Ньютон, А. И. Крылов воскресил доказательства и выводы великого английского уче­ного и изложил их в работе «Теория рефракции Нью­тона», вышедшей в свет в 1935 г. В заключительной части этой работы А. Н. Крылов плсал: «Если развить ньютонову теорию теми элементарными ме­тодами анализа, которыми Ньютон обладал, и срав­нить ее с современными теориями, то сразу можно будет заметить, сколь простое и естественное полу­чается изложение и сколько мало к нему, по су­ществу, за 240 лет прибавлено».[4]

В письме к Флемстиду, датированным 24 октября 1694 г., Нью­тон, в частности, писал: «Я того мнения, что рефракция . слегка изменяется вместе с весом воздуха, по­казываемым барометром, ибо, когда воздух тяжелее и, значит, плотнее, он преломляет более, нежели когда он легче и реже».[5] Вначале Ньютон полагал, что плотность воздуха убывает равномерно (линейно) от поверхности Земли до верхней границы атмо­сферы. Исходя из этого, он рассчитал свою первую таблицу рефракции. Обнаружив некоторое расхожде­ние между результатами расчета и данными наблю­дений Флемстида, Ньютон начал работать над новой таблицей рефракции. Он отказался от предположении о линейном убывании плотности воздуха с высотой и стал полагать, что плотность уменьшается пропорционально уменьшению давления. Ученый писал в связи с этим, что «плотность воздуха в земной атмосфере пропорциональна весу всего накрывающего воздуха».[6] Таким об­разом, Ньютон фактически пришел к выводу об убы­вании плотности атмосферы с высотой по экспонен­циальному закону. Поскольку изучение вышеуказанного закона не входит в круг задач настоящей работы, опустим достаточно объемные расчеты.

Рис. 2 показывает, как в процессе исследования астро­номической рефракции уточня­лись представления об общем характере изменения показате­ля преломления атмосферы с высотой.

Случай а) соответ­ствует теории Кеплера, б) - первоначальной ньютоновской теории рефракции, в) - уточ­ненной ньютоновской и современной теории рефрак­ции света в атмосфере.

Рис.2. Изменение представлений об общем характере изменения показате­ля преломления атмосферы с высотой

В середине XIX в. Ф.В. Бессель в своей теории, которая с некоторыми изменениями может считаться наилучшей, представил рефракцию формулой: r = α tgz(BT)A γλ, где B зависит от показания барометра, Т - термометра при барометре, γ - от температуры воздуха, α медленно изменяется с зенитным расстоянием, A и λ - величины, близкие к единице и отличаются чувствительно от неё только при больших зенитных расстояниях. Все эти величины даются в таблицах по аргументу z (зенитное расстояние).[7] Бессель изложил свою теорию и дал таблицы рефракции в труде «Fundamenta astronomiae».

2. ИЗУЧЕНИЕ РЕФРАКЦИОННЫХ ИСКАЖЕНИЙ В ИНЖЕНЕРНО - ГЕОДЕЗИЧЕСКИХ ИЗМЕРЕНИЯХ. НИВЕЛИРОВАНИЕ

В XVI столетии Ж. Пикар первый показал, что при геодезических работах зенитные расстояния земных предметов необходимо исправлять из-за преломления. Геодезическая рефракция - собирательный термин, которым иногда объединяют различные виды и проявления рефракции электромагнитных волн, обусловленные искривлением траектории распространения этих волн и сопутствующие всевозможным геодезическим измерениям. При этом объект наблюдения (источник наблюдаемых электромагнитных колебаний) находится в пределах земной атмосферы, тогда как в случае астрономической рефракцией расположен за пределами земной атмосферы и даже на бесконечно большом расстоянии по сравнению с радиусом земного шара.

Земная рефракция очень мало поддается вычислению, так как плотности нижних слоев воздуха более всего подвержены аномалиям. Из-за неоднородности строения земной атмосферы, в которой показатель преломления в различных точках пространства различен и меняется во времени, луч электромагнитной волны является пространственной кривой с переменной кривизной и кручением. Проекция этой кривой на вертикальную и горизонтальную плоскости в точке наблюдения приводит к так называемой вертикальной рефракции и горизонтальной (боковой) рефракции. Первая проявляется при различных видах нивелирования: тригонометрическом (земная рефракция), геометрическом (нивелирная рефракция); при аэрофотосъёмке (фотограмметрическая рефракция). Боковая рефракция на один-два порядка меньше, чем вертикальная, и сопутствует всем видам рефракции; она непосредственно влияет на результаты измерения горизонтальных углов и триангуляции ((от лат. triangulum - треугольник), один из методов создания сети опорных геодезических пунктов и сама сеть, созданная этим методом; состоит в построении рядов или сетей примыкающих друг к другу треугольников и в определении положения их вершин в избранной системе координат), полигонометрии и астрономических наблюдений азимутов.[8]

Зная показатель преломления атмосферы вдоль траектории распространения электромагнитных колебаний и вблизи неё, а также взаимное расположение источника и приёмника (наблюдателя) этих колебаний, можно составить уравнение луча и определить влияние рефракции на различные виды наблюдений. Однако незнание прежде всего точного показателя преломления атмосферы в моменты наблюдений (так как он находится в сложной зависимости от температуры, давления и влажности атмосферы, а также и от физико-географических условий, топографии местности, характера подстилающего покрова) не позволяет определить точную величину рефракции упомянутым прямым методом.

Страница:  1  2  3  4  5 


Другие рефераты на тему «Геология, гидрология и геодезия»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы