Энергетические характеристики гравитационных и магнитных аномалий

Кроме того,

(1.12)

Пусть спектры функций fр(х, у), fя(х, у) будут равны соответственно Sp(u, v) и Sл(u,v). Тогда при условии существования интеграла

для определения взаимных корреляционных функций и энергетического спектра получим равенства

g width=292 height=49 src="images/referats/10683/image024.png">(1.13)

(1.14)

. (1.15)

Пусть f(x, y), fp(x, y), fл(x, y) непрерывны в прямоугольнике -∞ < х < ∞, -∞ < у < ∞, В и Врл определены в прямоугольнике -∞ < ξ < ∞, -∞ < η < ∞, тогда верны равенства

(1.16)

(1.17)

Нормированная автокорреляционная функция

(1.18)

Для осесимметричных аномалий, т.е. когда функция f(x, y) зависит только от переменной , из формул (1.11), (1.12) и (1.16) соответственно получим

(1.19)

(1.20)

(1.21)

§ 2. Некоторые свойства и особенности применения энергетических спектров и корреляционных функций

Рассмотрим некоторые свойства и особенности применения энергетических спектров и корреляционных функции аномалий, которые будут широко использованы в последующих разделах.

1. Теорема Парсеваля

Пусть функция f(х) имеет спектр S(ω). Интегрируя по ω в бесконечных пределах обе части равенства (1.4), найдем

На основании равенства (1.3) получим

С учетом формулы (1.1) окончательно найдем

где учтено, что функция |S(ω)| — четная. Эту формулу обычно называют теоремой Парсеваля или теоремой Релея.

Аналогично для трехмерных аномалий на основании равенств (1.16), (1.12) и (1.10) для теоремы Парсеваля получим

Для трехмерных аномалий, симметричных относительно вертикальной оси, переходя к полярным координатам, отсюда найдем

Эту формулу можно получить и из равенства (1.21) (умножая обе его части на ρ и интегрируя по ρ в пределах от 0 до ∞) с учетом выражений (1.10) и (1.20).

Теорема Парсеваля, учитывающая величину полной энергии аномалий, имеет важное значение в гравиразведке и магниторазведке. Она использовалась в работах многих исследователей (К.В. Гладкий и др.). С ее применением В.Н. Страховым были получены ряд фундаментальных формул спектрального анализа гравитационных и магнитных аномалий.

2. Выражение энергетических спектров и корреляционных функций одних аномалий через другие

Пусть fx(x, y), fy(x, y), fz(x, y) — производные по осям координат x, y и z от некоторой гравитационной или магнитной аномалии f(х, y) (от гравитационного или магнитного потенциала, от ускорения силы тяжести и т.д.). Тогда пользуясь теоремами о спектрах производной функции, после небольших преобразований получим:

(1.22)

Практически наиболее важными являются случаи f = U и f = Vz, где U — магнитный потенциал, Vz — ускорение свободного падения. Для этих случаев последнее равенство можно переписать в виде:

(1.23)

(1.24)

Из этих равенств можно определить (заменить) энергетический спектр одной из аномалий: X, Y, Z или Vxz, Vyz, Vzz через известные значения энергетических спектров других аномалий. Этот вывод можно перенести и на случай автокорреляционных функций:

(1.25)

. (1.26)

В двухмерном случае (при ) из равенств (1.23)-(1.26) получим

(1.26а)

Из этих равенств видно, что в двухмерной задаче энергетические спектры и автокорреляционные функции аномалий H, Z или гравитационных Vxz, Vхх, Vzz полностью взаимозаменяемы. Некоторые из них показаны на рис. 6. Это же положение верно в двухмерном случае и для аномалий Vх, Vz, т.е. для горизонтальной и вертикальной производных от любой исходной одной и той же аномалии. Оно же верно и для аномалий H, Z в случае косого и вертикального намагничивания и для нормированных функций Q и B аномалий H, Z и ΔT.

Это важное свойство автокорреляционных функций и энергетических спектров. Им не обладают исходные гравитационные и магнитные аномалии, за исключением функций Vxz, Vхх, Vzz в трехмерном случае и Vхх и Vzz — в двухмерном, для которых указанное свойство следует из уравнения Лапласа.

Легко показать, что энергетический спектр аномалии является всегда вещественной и четной функцией. Тогда и автокорреляционная функция аномалии будет вещественной и четной функцией. Рассмотрим взаимные энергетические спектры Q12(ω) и Q21(ω) двух функций f1(x) и f2(x). Для них верны соотношения

Рис. 1. Примеры разных аномалий, которым соответствуют одни и те же автокорреляционная функция B(τ) и энергетический спектр Q(ω)

, (1.27)

(1.28)

(1.29)

Кроме того, легко показать, что произведение Q12Q21 и сумма Q12 + Q21 являются всегда четными функциями, а разность Q21 – Q12 — всегда мнимой. При этом, если одна аномалия четная, а вторая нечетная, то

(1.30)

Здесь, если первая функция — это , а вторая , где f — некоторая исходная аномалия (в двухмерном случае, например, для функций Vx, Vz; Vxz, Vzz для магнитных аномалий H и Z, если одна из них четная, а вторая - нечетная), то учитывая доказанное выше равенство Qp = Qq получим для суммы аномалий F = p + q:

Страница:  1  2  3  4 


Другие рефераты на тему «Геология, гидрология и геодезия»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2025 - www.refsru.com - рефераты, курсовые и дипломные работы