Энергетические характеристики гравитационных и магнитных аномалий

(1.31)

для взаимного энергетического спектра:

(1.32)

Что же касается взаимных корреляционных функций, то для них получим

где В12(τ) + В21(τ) — четная функция; В21(τ

;) – В12(τ) — нечетная функция.

Кроме того, из равенств (1.30), (1.31) и (1.32) соответственно получим (если одна из аномалий четная, вторая — нечетная)

, (1.33)

(1.34)

(1.35)

Полученные равенства можно использовать для замены выражений Q12, Q21 и B12 через значения Q1, Q2 и B21 при решении различных задач, в частности, при определении радиуса корреляции суммарного поля, состоящего из нескольких компонент — региональной, локальной составляющих и ошибок наблюдений; при определении возможности наличия корреляции между двумя сигналами и т.д. Из изложенного материала видно, что корреляционные функции и энергетические спектры аномалий обладают рядом других важных свойств, которые при решении многих задач гравиразведки и магниторазведки делают их применение предпочтительнее, чем применение самих аномалий. Прежде всего это то, что корреляционные функции и энергетические спектры аномалий являются некоторыми интегральными характеристиками, т.е. при определении их значений (хотя бы одного) используются все точки исходной аномалии — вся кривая, что приводит к значительному уменьшению случайных погрешностей инструментального и геологического характера. Влиянию ошибок наблюдений подвергается только центральная часть кривых корреляционных функций, что делает возможным исправление их значений в этой центральной части.

Для случая автокорреляции ближайшая к поверхности особая точка получаемых функций залегает в 2 раза глубже. Этот факт расширяет области применения различных трансформаций к значениям автокорреляционной функции.

Автокорреляционные функции и энергетические спектры аномалий для производных одного порядка взаимозаменяемы (в двухмерном случае равны), что позволяет по данным В или Q для аномалии одной производной определить значения рассматриваемых функций для аномалий другой производной или, если известны значения аномалий двух производных, например, Z и H повышать точность вычисления функции B и Q Взаимозаменяемость находит, например, широкое применение при совместной интерпретации данных гравитационного и магнитного полей.

Функции B и Q являются всегда четными, и этот факт облегчает возможность получения различных соотношений, упрощает кривые и делает их более пригодными для определения формы, размеров и глубины залегания аномальных тел.

В то же время следует отметить, что из-за четности автокорреляционных функций и энергетических спектров аномалий в них пропадают полезные эффекты, связанные с асимметричностью кривых аномалий и косым намагничиванием магнитных масс. Это вызвано тем, что указанные функции формируются только значениями амплитудного спектра, влияние же фазового спектра в них отсутствует. Как раз этим и объясняется то, что аномалии с равными амплитудными и разными фазовыми спектрами имеют одни и те же энергетические характеристики — функции B и Q. Поэтому полезное свойство

четности их кривых в некоторых случаях является их недостатком. Но применение энергетических характеристик аномалий основано на использовании их полезных свойств. Полезные же эффекты асимметричности косого намагничивания аномалий четко отражаются на значениях взаимных энергетических спектров и взаимных корреляционных функций, и при необходимости их можно определить из значений этих функций.

3. Интегрирование корреляционных функций знакопеременных аномалий

Другое свойство автокорреляционных функций для случая знакопеременных аномалий заключается в следующем. Пусть f(x) — гравитационная или магнитная аномалия, автокорреляционная функция которой B(τ) имеет нуль в одной точке τ0 (вторая точка нуля находится в бесконечности). Для таких аномалий

(1.36)

Переходя под интегралом от автокорреляционной функции к энергетическому спектру и меняя пределы интегрирования, для первого интеграла правой части получаем

(1.37)

С другой стороны, для знакопеременных аномалий на основании теорем о спектре производных получим

где S1(ω) — спектр аномалии f(x) (например, гравитационной аномалии Vxz или Vzz ), а S(ω) — спектр исходной незнакопеременной аномалии (например, аномалии Vz), который обращается в нуль только при . При ω = 0 с учетом формула (1.2) из последнего равенства получим.

(1.38)

или

Тогда должно выполняться равенство

, (1.39)

т.е. положительная часть площади под функцией B(τ) и осью τ должна равняться отрицательной. Поэтому из равенства (1.36) получим

(1.40)

Это равенство определяет важное свойство автокорреляционных функций знакопеременных аномалий и позволяет заменить бесконечные пределы интегрирования модуля автокорреляционных функций конечными — только от 0 до τ0.

На основании формулы (3.37) запишем аномалии

(1.41)

Это равенство позволяет перейти от интегрирования автокорреляционных функций к интегрированию энергетических спектров.

Для трехмерных знакопеременных по осям x и y аномалий получим равенство, аналогичное (1.40) (соответственно для произвольных и осесимметричных аномалий):

(1.42)

(1.43)

где ξ0 и η0 — горизонтальные координаты точек перехода автокорреляционной функции через нуль. Тогда аналогично равенству (1.40) сможем написать:

(1.44)

(1.45)

Аналогично формуле (1.41) в трехмерном случае соответственно для произвольных f(x, y) осесимметричных f(r) знакопеременных аномалий с учетом равенств (1.42), (1.43) мож­но получить следующие выражения:

(1.46)

(1.47)

Страница:  1  2  3  4 


Другие рефераты на тему «Геология, гидрология и геодезия»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы