Применение магнетронных генераторов большей мощности в радиолокационных системах

Рисунок 2.4 –Навигационный треугольник скоростей и линия равных доплеровских частот – изодоплеровская линия

Измерение угла сноса самолёта основано на фиксации минимальной частоты биений вторичного эффекта Доплера, которые возникают при отражении сигнала от земной поверхности или иных протяжённых объектов. Для пояснения этого эффекта целесообразно воспользоваться понятием линий равных доплер

овских частот на земной поверхности. Принцип их получения при горизонтальном полёте представлен на рис.2.4.

Рисунок 2.5 – Семейство изодоплеровских гипербол

Значение частоты Доплера при отражении сигнала от точки земной поверхности 0, лежащей на линии пути при бесконечно узкой диаграмме направленности РЛС, определяется

, (2.2)

где l - длина волны передатчика.

Из выражения (2.2) следует, что при g = const. Полагая g = const, будем мысленно вращать луч вокруг вектора W , образуя лучом поверхность конуса с осью, совпадающей с W. На земной поверхности луч прочертит кривую равных доплеровских частот, которая является гиперболой, так как образуется как линия пересечения конуса и горизонтальной поверхности, параллельной оси конуса. Полученную гиперболу называют изодоплеровской, потому что она проходит через точки земной поверхности, которым соответствует постоянная частота Доплера. Меняя значение g, можно получить семейство изодоплеровских гипербол, каждой из которых будет соответствовать своё новое значение Fд (рис 2.5). Используя это семейство, можно определить Fд при получении отражённых сигналов от любой точки земной поверхности,

В реальной РЛС луч антенны имеет конечную ширину в горизонтальной qв и вертикальной .в плоскостях, а зондирующий сигнал - импульс с длительностью и. Поэтому в каждый момент времени на вход приёмника РЛС одновременно будут поступать сигналы, отражённые от совокупности отражателей, лежащих в пределах участка местности Si (рис. 2.5-2.6). Протяжённость участка Si в направлении от самолёта определяется разрешающей способностью РЛС по дальности и углом наклона gi, а в поперечном направлении - шириной диаграммы qr и произвольно выбранным расстоянием Ri.

Площадь участка Si будет приближённо равна

. (2.3)

Участок Si для двух положений диаграммы направленности антенны РЛС по азимуту, спроектированный на сетку изодопплеровских частот, показан на рис.2.5 и на рис.2.6 в трёхмерной системе координат.

Как следует из рис.2.5, если ось луча смещена относительно линии пути на угол y, то частоты колебаний, отражённых от всех точек площадки Si, различны. Наибольшее различие соответствует точкам А1 и В2.

Рисунок 2.6 – Участки местности Si, сигналы от которых принимаются РЛС

Максимальная доплеровская частота в пределах участка Si будет получена от точечного отражателя в точке А1, а минимальная - от отражателя в точке В2 (рис.2.5 –2.6).

Для равноудаленных от РЛС точек в пределах участка Si наибольшее отличие в радиальных скоростях и, следовательно, в доплеровских частотах Fд соответствует точкам А1 и В1

,

, (2.4)

где qr - ширина диаграммы направленности в горизонтальной плоскости.

Сигналы, отражённые от разных точек Si , суммируются на входе приёмника и на выходе амплитудного детектора образуют разностные частоты, которые называются вторичными доплеровскими частотами (биениями).

Для пояснения возникновения вторичных доплеровских частот рассмотрим суммарный сигнал , образованный сигналами UА1(t) и UВ1(t), отражёнными только от точек А1 и В1 площадки Si. При этом будем считать, что РЛС работает в непрерывном режиме, излучая немодулированное синусоидальное колебание частоты f0 , а отражённые сигналы от точек А1 и В1 имеют одинаковые амплитуды ZА1 =ZВ1=Z

(2.5)

где j1 и j2 - набег фазы, возникающий при отражении зондирующего сигнала от точек А1 и В1. Как следует из выражения (2.5) суммарный сигнал является амплитудно-модулированным. Функция

определяет закон амплитудной модуляции, а FДА1 и FДВ1 – частоту амплитудной модуляции.

Таким образом, на выходе амплитудного детектора приёмника РЛС будет иметь место амплитудно-модулированное колебание. Огибающая амплитудно-модулированного суммарного сигнала на выходе УПЧ и соответствующее этому сигналу напряжение на выходе амплитудного детектора представлены пунктиром на рис.2.7 для двух значений отклонения диаграммы направленности антенны от линии пути и .

В реальных условиях на вход приёмника РЛС одновременно поступают сигналы, отражённые от множества точек участка Si.

Доплеровские частоты этих сигналов различны и меняются, в зависимости от расположения отражающей точки площадки Si , в пределах от FДА1 до FДВ1.

Рисунок 2.7 – Биение амплитуды сигнала, принимаемого от участка Si, на выходе УПЧ (а) и амплитудного детектора (б) при непрерывном (обозначено пунктиром) и импульсном сигнале, вызванные вторичным эффектом Доплера.

Поэтому, в результате сложения принимаемых сигналов в приёмном тракте РЛС амплитуда результирующего колебания меняется не по косинусоиде, как в рассмотренном выше примере и показано на рис. 2.8, а более сложным образом. Спектр изменения амплитуды результирующего сигнала называется спектром вторичных доплеровских частот. Для равноудалённых от РЛС точек площадки Si ширина спектра доплеровских частот будет

, (2.6)

где - радиальная скорость движения самолёта относительно точки земной поверхности, находящейся на линии пути под углом (рис. 2.6).

Зависимость ширины спектра вторичных доплеровских частот от направления луча диаграммы направленности y для равноудалённых от РЛС точек характеризуется полярной диаграммой, показанной на рис. 8. В ней направление радиуса вектора соответствует углу поворота диаграммы направленности в горизонтальной плоскости y, а длина (в пределах сплошных касающихся окружностей) - ширина спектра вторичных доплеровских частот.

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16  17  18  19  20  21  22  23  24  25  26  27 


Другие рефераты на тему «Коммуникации, связь и радиоэлектроника»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы