Оценка параметрической надежности РЭС с использованием моделирования на ЭВМ постепенных отказов
При помощи ЭВМ моделируем n различных реализаций РЭУ с параметрами элементов, распределенных либо по нормальному закону, либо по равномерному закону. Затем пересчитываем значения параметров элементов при воздействии на них температуры и времени. При этом предполагаем, что температурный коэффициенты aR, а также коэффициенты старения СR распределены по нормальному закону, а температура окружающей
среды Траб – по равномерному. В связи с тем, что закон распределения температуры окружающей среды был неизвестен, и не было возможности попытаться подобрать закон распределения экспериментально, то была принята гипотеза о том, что температура распределена по равномерному закону, так как эта модель на практике является предельным (наихудшим) случаем разброса параметра. Определяем выходной параметр по формуле (1.1) – этот коэффициент передачи назовем “реальным”(Kр).
По способу, изложенному в подразделе 1.2, вероятность отсутствия параметрического отказа определим следующим образом:
Р (Kн £ Kр £Kв tзад)= , (2.1)
где nисп – число исправных РЭУ на момент времени tзад;
N – общее число смоделированных РЭУ;
Kн – нижнее значение коэффициента передачи Kн = Kи - DKи;
Kв – верхнее значение коэффициента передачи Kв = Kи + DKи.
Определяем математическое ожидание выходного параметра М*(Kр) и его среднеквадратичное отклонение s*(Kр) по формулам [1]:
М*(Kр) = , (2.2)
(2.3)
3. РЕШЕНИЕ ЗАДАЧИ НА ЭВМ
3.1 Описание вычислительного алгоритма моделирования температурных и временных изменений параметров
R1, R2, R3 - сопротивления 1-го, 2-го и 3-го резисторов;
Rbx - входное сопротивление, Koy - коэффициент усиления.
1. При помощи стандартной функции Random генерируем равномерно распределённое значение температуры: temp.
Здесь вычислительный алгоритм разделяется на 2 части:
а) Если температура попала в положительную область диапазона рабочих температур т.е 20,
то, используя формулу (3.1) [1] генерируем нормально распределённые значения температурных коэффициентов aR+, a Rbx : dx1,dx2,dx3,dx 4.
aR+ - температурный коэффициент для резисторов в полож-й области температур;
a Rbx - температурный коэффициент для входного сопротивления.
dx1, dx2, dx3, dx4 – сгенерированные значения температурных коэффициентов для
1-го, 2-го, 3-го резисторов и входного сопротивления соответственно.
б)Если температура попала в отрицательную область диапазона рабочих температур т.е 20,
то, используя формулу (3.1) [1] генерируем нормально распределённые значения температурных коэффициентов aR+ , a Rbx : dx1,dx2,dx3,dx4.
aR- - температурный коэффициент для резисторов в отриц-й области температур;
a Rbx - температурный коэффициент для входного сопротивления.
dx1, dx2, dx3, dx4 – сгенерированные значения температурных коэффициентов для
1-го, 2-го, 3-го резисторов и входного сопротивления соответственно.
x = s×+ m, (3.1)
где x – нормально распределённое случайное число;
m – математическое ожидание;
s – среднеквадратичное отклонение;
ri – стандартное равномерно распределенное случайное число в диапазоне 0 1. (ri получаем при помощи стандартной функции Random).
Далее пересчитываем значения первичных параметров (R1,R2, R3, Rbx) с учётом воздействия температуры. Для этого воспользуемся формулами [1]:
(3.2)
где – номинальные значения i-го первичного параметра;
–приращения значений i-го первичного параметра под действием температуры;
Согласно [1] относительное изменение i-го первичного параметра под воздействием температуры (старения) можно выразить следующим образом:
(3.3)
(3.4)
где – температурный коэффициент i-го первичного параметра;
°C,
где tср – температура окружающей среды;
сi – коэффициент старения i-го первичного параметра;
– рассматриваемый интервал времени.
В качестве tср для положительной области диапазона рабочих температур примем
наибольшую из возможных температур - Tv, а для отрицательной области примем наименьшую из возможных температур - Tn. С учётом этого и формул (3.3) и (3.4) формула (3.2) примет вид:
для ‘‘+‘‘ -ой области температур:
(3.5)
С учётом этой формулы получаем:
;; ;;
для ‘‘-‘‘ -ой области температур:
(3.6)
С учётом этой формулы получаем:
;;
;;
где Rtemp1, Rtemp2, Rtemp3 - значения сопротивлений 1-го, 2-го и 3-го резисторов соответственно с учётом действия температуры.
RWtemp – значение входного сопротивления под действием температуры.
SR1, SR2, SR3 – номинальные значения 1-го, 2-го и 3-го резисторов соответственно.
SRW – номинальное значение входного сопротивления.
Для получения значений коэффициента усиления (Koy) производим смещение параметров m = m(z) и s = s(z) его температурного коэффициента (a Koy) с учётом коэффициента парной корреляции , а затем, воспользовавшись подпрограммой формирования случайных нормально распределённых чисел с параметрами m = m(z/x) и s = s(z/x) генерируем нормально распределённое значение его температурного коэффициента(a Koy):dx5.
Другие рефераты на тему «Коммуникации, связь и радиоэлектроника»:
Поиск рефератов
Последние рефераты раздела
- Микроконтроллер системы управления
- Разработка алгоритмического и программного обеспечения стандарта IEEE 1500 для тестирования гибкой автоматизированной системы в пакете кристаллов
- Разработка базы данных для информатизации деятельности предприятия малого бизнеса Delphi 7.0
- Разработка детектора высокочастотного излучения
- Разработка микропроцессорного устройства для проверки и диагностики двигателя внутреннего сгорания автомобиля
- Разработка микшерного пульта
- Математические основы теории систем