Акустические и капиллярные методы контроля РЭСИ. Электролиз (пузырьковый метод)

Обозначение обнаруженных дефектов:

II – параллельный главной оси объекта,

L – перпендикулярный к оси объекта,

< - расположенные под углом,

А – единичные, Б – групповые, В – повсеместно распределенные,

О – допустимые, без знака – недопустимые,

* – сквозные дефекты.

Пример обозначения дефектов:

AII - дефект единичный, допустимый, сквозной, расположенный парал­

лельно главной оси объекта.

Недостатки метода:,

– длительность процесса -20 мин;

– необходимость тщательной очистки поверхностей изделий.

Электролиз (пузырьковый метод).

В последнее время все большее распространение получают комбинированные методы, сочетающие два или более различных по физической сущности МНК. Таким примером могут служить электрохимические методы. В их основе лежат различные способы, позволяющие визуализировать дефекты, реакциями у дефектных мест или декорированием. Рассмотрим, например, метод, осно­ванный на реакциях у дефектных мест с образованием газовых пузырьков.

Метод применяется для обнаружения дефектов типа сквозных пор и отвер­стий в диэлектрических пленках. Указателем наличия пор (микроотверстий) являются локально выделяющиеся из дефектных мест газообразные продукты электролиза электролита, наблюдаемые под микроскопом или по току в цепи электрод-электролит-подложка.

В качестве электролита могут быть использованы следующие растворы:

- слабый водный раствор KCL (3-10- процентный);

- раствор серной кислоты (2-3 процентный);

- ацетон или метиловый спирт;

- деионизованная вода, CuSO4 и желатин.

Рисунок 3 – Виды включения измерительной ячейки электролит-пленка-подложка

а) без смещения; б) прямое смещение; в) обратное смещение.

Условием определения дефектности пленок с помощью данного метода яв­ляется проникновение раствора электролита в поры исследуемой пленки.

Такое проникновение возможно далеко не всегда: большое поверхностное натяжение на границе раствор-пленка, малый размер пор и отсутствие смеще­ния на ячейке препятствуют проникновению раствора к полупроводниковой пластине (см. рис.3,а)

При приложении напряжения определенной величины и полярности (« - » к кремниевой подложке, «+» к раствору электролита – рис. 3,б) наблюдается выделение пузырьков газа (водорода) и появляется электрический ток. Это объясняется тем, что на границе «раствор – диэлектрик» имеется двойной электрический слой, образованный адсорбированными ионами раствора элек­тролита.

Полярность этого слоя обычно определяется правилом Коэна: тела с боль­шей диэлектрической проницаемостью заряжаются положительно. Так как диэлектрическая проницаемость большинства пленок находится в пределах 4-10, а водных растворов электролитов до 81, то полярность двойного электри­ческого слоя на границе раствор-диэлектрик будет соответствовать положительному заряду раствора. На каплю раствора в этом случае будут действовать силы, стремящиеся затянуть ее в пору диэлектрика. Затягивание раствора в мелкие капилляры происходит только при достижении определенного напряжения (20 -50 В).

При приложении напряжения обратной полярности между подложкой и раствором будет происходить выталкивание капли раствора из поры (см. рис.3,в)

Процесс электролиза включает в себя следующие стадии:

-диссоциация молекул воды

(1)

-образование иона гидроксония

(2)

- дрейф иона гидроксония к катоду (исследуемой пластине кремния с пористым диэлектриком SiO2);

- нейтрализация иона гидроксония электроном

(3)

-образование молекулы водорода

(4)

-формирование из молекул Н2 пузырька водорода и всплытие его в жидко­ сти под действием выталкивающей силы F, равной:

(5)

где

R – радиус пузырька;

рж – плотность жидкости;

g – ускорение свободного падения.

Ток в поре диэлектрика определяется по формуле:

(6)

где

е – заряд электрона;

N – число молекул водорода в объеме пузырька;

t – время образования пузырька.

От напряжения внешнего электрического поля зависят лишь третий и чет­вертый этапы. Оценка пористости пленки включает в себя определение диа­метра пор и числа пор на единицу поверхности.

Оценка диаметра пор может проводиться следующими методами:

1) Визуально, по радиусу окрашиваемого пятна

(7)

где

– радиус поры;

к – поправочная функция на несферичность пузырька;

– радиус пузырька водорода;

σ – поверхностное натяжение на границе газ-раствор.

Радиус пор может быть вычислен также по приближенному соотношению:

(8)

2) По номограмме.

Для определения величины диаметра поры необходимо значение диа­метра пятна соединить прямой линией со значением напряжения (см. рис. 4). Затем прямой линией соединить значения времени и толщины окисной пленки кремния . Точки пересечения этих прямых (а и b) со вспо­могательными осями 1 и 2 соединяются между собой, и точка пересечения (δ) этой линии с осью определяет величину диаметра поры. Этот метод оценки размера сквозных дефектов может быть использован практиче­ски для любых диэлектрических пленок.

3) По ВАХ структурам (полупроводник-диэлектрик-электролит ПДЭ).

Если при обратной полярности по цепи структуры ПДЭ протекает ток в несколько миллиампер (см. рис.5), то это свидетельствует о том, что все существующие в диэлектрической пленке поры имеют размеры, пре­вышающие 1 мкм. Мелкие поры характеризуются отсутствием тока в данной цепи.

Оценка среднего числа пор на единицу поверхности производится по формуле:

(9)

где - общее количество дефектов при фиксированном поле;

S – площадь исследуемой структуры;

к – число наблюдений при фиксированном поле.

Зависимость пористости диэлектрических пленок на кремниевых под­ножках от способов получения пленок представлена в таблице 3.

Страница:  1  2  3 


Другие рефераты на тему «Коммуникации, связь и радиоэлектроника»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы