Генератор серий синхроимпульсов
Введение
Работа любой ЭВМ и любого цифрового устройства сопровождается передачей данных по тракту их обработки от предыдущих функциональных блоков и узлов к последующим. Взаимодействие этих блоков и узлов во времени организуется различными способами, рассмотренными в [1]. Особо важную роль среди способов организации взаимодействия частей цифровых устройств и ЭВМ во вр
емени играет синхронизация, осуществляемая с помощью специальных устройств синхронизации (синхронизаторов), сигналы от которых распределяются по всем частям ЭВМ. Эти сигналы разрешают прием и выдачу данных, а также тактируют процесс их обработки. Существуют однофазные и многофазные системы синхронизации. Многофазная синхронизация характеризуется наличием более чем двух серий (наборов) синхроимпульсов и применяется для увеличения быстродействия тактируемых устройств. Это осуществляется с помощью разбиения периода следования синхросигналов на несколько частей и использования в отдельных блоках ЭВМ или других цифровых устройств синхросигналов более высокой, чем основная, частоты. В данном случае необходимо разработать устройство синхронизации аналогичного назначения, формирующее четыре серии синхроимпульсов в соответствии с исходным ТЗ.
1. РАЗРАБОТКА СТРУКТУРНОЙ СХЕМЫ УСТРОЙСТВА И ОБОСНОВАНИЕ ПРИНЯТЫХ РЕШЕНИЙ
1.1. Выбор и обоснование структурной схемы
Генератор может быть построен на основании четырехразрядного кольцевого счетчика и неполного линейного дешифратора, который можно реализовать на логических элементах, выполняющих функцию 2И.
Структурная схема генератора приведена на рис.1.1.
Рис. 1.1.Структурная схема генератора
СИ – тактовые синхроимпульсы
CT – кольцевой счетчик
DC – дешифратор
1.2. Разработка функциональных схем отдельных блоков устройства
На рис.1.2 приведена функциональная схема кольцевого счетчика, построенного на основе обычного сдвигового регистра со сдвигом вправо. В качестве разрядных триггеров использованы D – триггеры с прямым динамическим управлением. Благодаря тому, что триггеры имеют как прямой ( Q ), так и инверсный ( Q ) выход, на входе схемы дешифратора, подключенного к прямым и инверсным выходам счетчика, нет необходимости использовать дополнительные инверторы для получения парафазных кодов. Таблица состояний и временная диаграмма работы счетчика приведены соответственно в табл.1.1 и на рис.1.5.
На рис.1.3 приведена функциональная схема дешифратора, который представляет собой простой неполный линейный дешифратор. Работа дешифратора в статическом режиме полностью описывается с помощью таблицы состояний ( табл.1.1 ). Согласно этой таблице функциональная схема может быть реализована на основе следующих логических выражений:
Q1 = Q3 Ù Q2 (1)
Q2 = Q1 Ù Q0 (2)
Q3 = Q2 Ù Q3 (3)
Q4 = Q0 Ù Q1 (4)
Для реализации данных логических выражений достаточно воспользоваться четырьмя элементами, реализующих функцию 2И.
1.3 Алгоритм и временная диаграмма работы генератора и отдельных блоков
Временная диаграмма, иллюстрирующая работу как генератора в целом, так и его отдельных блоков, приведена рис. 1.3.
Таблица 1.1.
Таблица состояний счетчика
СИ |
ВЫХОДЫ | |||
Q3 |
Q2 |
Q1 |
Q0 | |
0 1 2 3 4 5 6 7 8 |
0 1 1 1 1 0 0 0 0 |
0 0 1 1 1 1 0 0 0 |
0 0 0 1 1 1 1 0 0 |
0 0 0 0 1 1 1 1 0 |
Таблица 1.1.
Таблица состояний счетчика
ВХОДЫ |
ВЫХОДЫ | ||||||
Q3 |
Q2 |
Q1 |
Q0 |
Ф1 |
Ф2 |
Ф3 |
Ф4 |
0 1 1 1 1 0 0 0 0 |
0 0 1 1 1 1 0 0 0 |
0 0 0 1 1 1 1 0 0 |
0 0 0 0 1 1 1 1 0 |
0 1 0 0 0 0 0 0 0 |
0 0 0 1 0 0 0 0 0 |
0 0 0 0 0 1 0 0 0 |
0 0 0 0 0 0 0 1 0 |
Рис 1.2. Функциональная схема счетчика
Рис 1.3. Функциональная схема дешифратора
Функциональная схема задающего генератора ( G ) приведена на рис.1.4.
Рис 1.4. Функциональная схема генератора
1.4. Описание принципа действия
Так как после включения питания триггеры счетчика могут установиться в любое состояние ( ’’0’’ или ’’1’’), то перед началом работы необходимо установить все разрядные триггеры в нулевое состояние. Для этого на все входы установки в ''0'' разрядных триггеров ( R ) необходимо подать на короткое время сигнал низкого уровня, т.к. предложенные в задании триггеры имеют инверсный асинхронный вход установки в ''0''.
Длительность этого сигнала должна быть не меньше времени установки в ''0'' разрядных триггеров. Первый тактовый синхроимпульс, следующий после окончания сигнала ''сброс'', вызывает появление на выходе генератора первого фазового импульса Q1.
Работа генератора в статическом режиме полностью описывается таблицами состояний счетчика (табл. 1.1) и дешифратора (табл. 1.2). В динамическом режиме работа генератора осуществляется в соответствии с временной диаграммой, приведенной на рис. 1.5. Из этой временной диаграммы видно, что появляющийся на выходе дешифратора последовательно во времени импульсы управления с четырехфазным шаговым двигателем Ф1, Ф2, Ф3 и Ф4 соответствуют временной диаграмме задания. Период следования и длительность импульсов Ф1, Ф2, Ф3, Ф4 определяются частотой следования тактовых синхроимпульсов (СИ), поступающих от внешнего тактового генератора
Другие рефераты на тему «Коммуникации, связь и радиоэлектроника»:
Поиск рефератов
Последние рефераты раздела
- Микроконтроллер системы управления
- Разработка алгоритмического и программного обеспечения стандарта IEEE 1500 для тестирования гибкой автоматизированной системы в пакете кристаллов
- Разработка базы данных для информатизации деятельности предприятия малого бизнеса Delphi 7.0
- Разработка детектора высокочастотного излучения
- Разработка микропроцессорного устройства для проверки и диагностики двигателя внутреннего сгорания автомобиля
- Разработка микшерного пульта
- Математические основы теории систем