Нелинейные и линейные модели биполярного транзистора
В зависимости от сочетания напряжений на p-n-переходах биполярный транзистор (БПТ) может работать в нормальном (активном), инверсном режимах, режимах насыщения и запирания (отсечки). Различают три схемы его включения: с общим эмиттером (ОЭ); общей базой (ОБ); общим коллектором (ОК).
Наиболее распространенной нелинейной моделью БПТ является модель Эберса – Молла в схеме ОБ , приведенная на
рис. 1, а для Т типа p-n-p. Она отличается сравнительной простотой и не учитывает эффект Эрли, пробой переходов, зависимость коэффициента a передачи от тока, объемные сопротивления слоев эмиттера, коллектора, базы и ряд других факторов. В модели переходы представлены диодами, их взаимодействие – генераторами токов I1 и I2, где I1 (I2 ) – ток эмиттерного (коллекторного) Д, () – интегральный коэффициент передачи эмиттерного (коллекторного) тока. В общем случае (независимо от режима) ток IЭ (IК ) эмиттера (коллектора) состоит из двух компонент: инжектируемого I1 (I2 ) и собираемого I2 (I1). Поэтому
а б Рис. 1. Нелинейные модели БПТ в схеме с ОБ |
, , (1)
где по аналогии с (1.1)
, ; (2)
() – тепловой ток эмиттерного (коллекторного) Д при напряжении
UК = 0 (UЭ = 0).
Последующей подстановкой (2) в (1) получаем известные формулы Эберса – Молла:
,
, (3)
.
Описываемые (3) зависимости IЭ = f1 (UЭ , UК ) и IК = f2 (UЭ , UК ) представляют собой статические ВАХ БПТ. Они, несмотря на идеализацию, хорошо отражают особенности прибора при любых сочетаниях напряжений на переходах. В случае кремниевых Т расчеты дают бόльшую погрешность, так как у них, по сравнению с германиевыми, обратный ток существенно отличается от теплового.
Известно, что тепловой ток коллектора IК0 (эмиттера IЭ0) соответствует режиму обрыва цепи эмиттера (коллектора) и большого запирающего напряжения |UК | >> mjT (|UЭ | >> mjT ) на коллекторе (эмиттере). Полагая с учетом этого в (1) и (2) IЭ = 0, IК =IК0 , I2 = – (IК = 0, IЭ =IЭ0 , I1 = –), устанавливаем необходимую связь между тепловыми токами:
(4)
В БПТ выполняется условие . Используя его, из выражений (3) можно получить
,
. (5)
Семейства (5) коллекторных характеристик IК = φ1(UК ) с параметром IЭ и эмиттерных характеристик UЭ = φ2 (IЭ ) с параметром UК более удобны для практики, поскольку проще задать ток IЭ , а не напряжение UЭ . В активном режиме UК < 0 и |UК | >> mjT , поэтому зависимости (1.13) переходят в следующие:
, (6)
. (7)
Реальные коллекторные характеристики БПТ, в отличие от (7), неэквидистантны: расстояние между кривыми уменьшается при больших токах IЭ вследствие уменьшения коэффициента (далее просто ). Они имеют конечный, хотя и очень небольшой, наклон, который существенно увеличивается в области, близкой к пробою. Наклон кривых обусловлен неучтенным сопротивлением коллекторного перехода (вследствие модуляции толщины базы – эффекта Эрли). При нагреве Т характеристики смещаются в область бόльших токов IК из-за роста тока IК0 . Реальные эмиттерные характеристики с повышением температуры смещаются влево в область меньших напряжений UЭ . При высоких уровнях инжекции они деформируются: возникает омический участок ВАХ.
Усредняя нелинейное сопротивление rК коллекторного перехода и добавляя слагаемое в (7), приходим к выражению, описывающему семейство реальных коллекторных характеристик БПТ в схеме с ОБ:
(8)
Этому уравнению соответствует нелинейная модель на рис. 2, б, в которую введено объемное сопротивление rБ базы. Модель удобна для расчета усилительных каскадов в режиме большого сигнала. При необходимости в нее дополнительно вводят сопротивления слоев rЭЭ (эмиттера) и rКК (коллектора). Последние, однако, в большинстве случаев несущественны.
Коллекторные характеристики IК = y1 (UК ) БПТ в схеме с ОЭ имеют следующие отличия от аналогичных в схеме с ОБ: полностью расположены в первом квадранте, поскольку |UКЭ | = |UКБ | + UЭ ; менее регулярны, имеют значительно больший и неодинаковый наклон, заметно сгущаются при значительных токах; ток IК при обрыве базы (IБ = 0) намного больше тока IК = IК0 при обрыве эмиттера (IЭ = 0); входной ток IБ может иметь не только положительную, но и небольшую отрицательную величину; имеют меньшее напряжение Ub пробоя. Входные характеристики IБ = y2 (UБ ), по сравнению с аналогичными в схеме с ОБ, имеют другой масштаб токов; сдвинуты вниз на величину тока IК0 , который протекает в базе при IЭ = 0; несколько более линейны; с увеличением напряжения |UКЭ | сдвигаются вправо, в сторону бόльших напряжений UБ .
Подстановкой IЭ = IК + IБ из выражения (8) вытекает аналитическая зависимость для семейства коллекторных характеристик IК =y1(UК) БПТ в активном режиме в схеме с ОЭ:
, (9)
где – интегральный коэффициент передачи тока IБ базы;
;
.
Другие рефераты на тему «Коммуникации, связь и радиоэлектроника»:
- Метод статистической и гармонической линеаризации. Расчет автоколебаний по критерию Найквиста
- Схема процесса автоматизированного проектирования РЭС. Структура и классификация проектных задач
- Измерение низкоэнергетических y–квантов. Спектрометрия КХ–y–излучения
- Приемник радиопеленгатора
- Защита информации от утечки по цепям питания
Поиск рефератов
Последние рефераты раздела
- Микроконтроллер системы управления
- Разработка алгоритмического и программного обеспечения стандарта IEEE 1500 для тестирования гибкой автоматизированной системы в пакете кристаллов
- Разработка базы данных для информатизации деятельности предприятия малого бизнеса Delphi 7.0
- Разработка детектора высокочастотного излучения
- Разработка микропроцессорного устройства для проверки и диагностики двигателя внутреннего сгорания автомобиля
- Разработка микшерного пульта
- Математические основы теории систем