Решение линейной системы уравнений с тремя неизвестными
Имеем
Треугольник АВС, высота СD, медиана AE, прямая EF , точка M и окружность построенная в системе координат x0у на рис.1.
Рис. 1
Задача 3
С
оставить уравнение линии, для каждой точки которой ее расстояние до точки А (2; 5) равно расстоянию до прямой у = 1. Полученную кривую построить в системе координат
Решение
Пусть М (x, у) - текущая точка искомой кривой. Опустим из точки М перпендикуляр MB на прямую у = 1 (рис.2). Тогда В(х; 1). Так как МА = MB , то
Pиc. 2
Полученное уравнение определяет параболу с вершиной в точке С(5; -1,5) и ветвями, направленными вверх (см. рис 2).
Задача 4
Найти указанные пределы:
а)
Ответ:
б)
Ответ:
Задача 5
Найти производные dy/dx, пользуясь правилами и формулами дифференцирования
Решение:
а)
Ответ:
б)
Ответ:
в)
Ответ:
Задача 6
Исследовать заданные функции методами дифференциального исчисления, начертить их графики.
а) ; б)
Решение
а)
1) Областью определения данной функции являются все действительные значения аргумента х, то есть D(y) = {х: хÎ(-¥, +¥)}, а это значит, что функция непрерывна на всей числовой прямой и ее график не имеет вертикальных асимптот.
2) Исследуем функцию на экстремумы и интервалы монотонности. С этой целью найдем ее производную и приравняем к нулю:
Решая полученное квадратное уравнение, делаем вывод о том, что функция имеет две критические точки первого рода х1 = 1, х2 = 2.
Разбиваем область определения этими точками на части и по изменению в них знака производной функции выявляем промежутки ее монотонности и наличие экстремумов:
х |
(-¥; 1) |
1 |
(1; 2) |
2 |
(2; ¥) |
f ’(x) |
+ |
0 |
- |
0 |
+ |
f(x) |
|
max |
|
min |
|
3) Определим точки перегиба графика функции и интервалы его выпуклости и вогнутости. Для этого найдем вторую производную заданной функции и приравняем ее к нулю:
Итак, функция имеет одну критическую точку второго рода х = -1,5. Разобьем область определения полученной точкой на части, в каждой из которых установим знак второй производной:
х |
(-¥; 1,5) |
1,5 |
(1,5; ¥) |
f ‘’(x) |
- |
0 |
+ |
f(x) |
Ç |
т. п. |
È |
Значение х = 1,5 является абсциссой точки перегиба графика функции, а ордината этой точки:
4) Выясним наличие у графика заданной функции асимптот. Для определения параметров уравнения асимптоты y = kx – b воспользуемся формулами
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах