Определенный интеграл
Из условия задачи следует, что , . По формуле (9) получаем
.
Рис. 10
Рис. 11
Объем тела, полученного вращением вокруг оси Оу криволинейной трапеции, ограниченной прямыми у = с и у = d, осью Оу и графиком непрерывной на отрезке функции (рис. 12), определяется по формуле
. (10)
|
Рис. 12
Пример 14. Вычислить объем тела, полученного вращением вокруг оси Оу криволинейной трапеции, ограниченной линиями х2 = 4у, у = 4, х = 0 (рис. 13).
Решение. В соответствии с условием задачи находим пределы интегрирования: , . По формуле (10) получаем:
.
Рис. 13
3. Длина дуги плоской кривой
Пусть кривая , заданная уравнением , где , лежит в плоскости (рис. 14).
Рис. 14
Определение. Под длиной дуги понимается предел, к которому стремится длина ломаной линии, вписанной в эту дугу, когда число звеньев ломаной стремится к бесконечности, а длина наибольшего звена стремится к нулю.
Если функция и ее производная непрерывны на отрезке , то длина дуги кривой вычисляется по формуле
. (11)
Пример 15. Вычислить длину дуги кривой , заключенной между точками, для которых .
Решение. Из условия задачи имеем . По формуле (11) получаем:
.
4. Несобственные интегралы с бесконечными пределами интегрирования
При введении понятия определённого интеграла предполагалось, что выполняются следующие два условия:
а) пределы интегрирования а и являются конечными;
б) подынтегральная функция ограничена на отрезке .
Если хотя бы одно из этих условий не выполняется, то интеграл называется несобственным.
Рассмотрим вначале несобственные интегралы с бесконечными пределами интегрирования.
Определение. Пусть функция определена и непрерывна на промежутке , тогда
(12)
называется несобственным интегралом с бесконечным верхним пределом интегрирования (несобственным интегралом I рода).
Если существует и конечен, то несобственный интеграл называется сходящимся; если данный предел не существует или равен , то несобственный интеграл называется расходящимся.
Геометрически несобственный интеграл от неотрицательной функции выражает площадь бесконечной криволинейной трапеции, ограниченной сверху графиком функции , снизу – осью , слева – отрезком прямой и неограниченной справа (рис. 15).
Если несобственный интеграл сходится, то эта площадь является конечной; если несобственный интеграл расходится, то эта площадь бесконечна.
Рис. 15
Аналогично определяется несобственный интеграл с бесконечным нижним пределом интегрирования:
. (13)
Этот интеграл сходится, если предел в правой части равенства (13) существует и конечен; в противном случае интеграл называется расходящимся.
Несобственный интеграл с двумя бесконечными пределами интегрирования определяется следующим образом:
, (14)
где с – любая точка интервала . Интеграл сходится только в том случае, когда сходятся оба интеграла в правой части равенства (14).
Пример 16. Исследовать на сходимость несобственные интегралы:
а) ; б); в) ; г) .
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах