Экономико-математические методы и модели

Задача 7. Выяснить, чему равны предельные и средние полные затраты предприятия, если эластичность полных затрат равна 1?

Решение. Пусть полные затраты предприятия y выражаются функцией , где x – объём выпускаемой продукции. Тогда средние затраты y1 на производство единицы продукции . Эластичность частного двух функции равна разности их эластичностей, т.е. .

По условию , следовательно, . Это означает, что с изменением объёма продукции средние затраты на единицу продукции не меняются, т.е., откуда .

предельные издержки предприятия определяются производной . Итак, т.е предельные издержки равны средним издержкам(полученное утверждение справедливо только для линейных функций издержек).

2. Задания для самостоятельной работы.

2.1. Издержки перевозки двумя видами транспорта выражаются уравнениями:и , где - расстояния в сотнях километров, - транспортные расходы. Начиная с какого расстояния более экономичен второй вид транспорта?

2.2. Зная, что изменение объёма производства с изменением производительности труда происходит по прямой линии, составить её уравнение, если при =3 =185, а при =5 =305. Определить объём производства при =20.

2.3. Предприятие купило автомобиль стоимостью 150 тыс.руб. Ежегодная норма амортизации составляет 9%. Полагая зависимость стоимости автомобиля от времени линейной, найти стоимость автомобиля через 4,5 года.

2.4. Зависимость уровня потребления некоторого вида товаров от уровня дохода семьи выражается формулой: . Найти уровень потребления товаров при уровне дохода семьи 158 ден.ед. Известно, что при =50 =0; =74 =0,8; =326 =2,3.

2.5. Банк выплачивает ежегодно 5% годовых (сложный процент). Определить: а) размер вклада через 3 года, если первоначальный вклад составил 10 тыс. руб.; б) размер первоначального вклада, при котором через 4 года вклад (вместе с процентными деньгами) составит 10 000 руб.

Указание. Размер вклада через t лет определяется по формуле , где p-процентная ставка за год, Q0 –первоначальный вклад.

2.6. Затраты на производство продукции (тыс.руб.) выражаются уравнением , где -количество месяцев. Доход от реализации продукции выражается уравнением . Начиная с какого месяца производство будет рентабельным?

2.7. Зависимость между себестоимостью единицы продукции y (тыс. руб.) и выпуском продукции x (млрд.руб.) выражается функцией . Найти эластичность себестоимости при выпуске продукции, равном 60 млрд.руб.

Практическое занятие.

Тема. Предельный анализ экономических процессов.

Цель. Рассмотреть применение математических методов для нахождения предельных величин в оптимизационных задачах.

1.Справочный материал.

Функция издержек С(х) определяет затраты, необходимые для производства x единиц данного продукта. Прибыль , где D(x)- доход от производства x единиц продукта.

Средние издержки A(x) при производстве x единиц продукта есть .Предельные издержки .

Оптимальным значением выпуска для производителя является то значение x единиц продукта, при котором прибыль P(x) оказывается наибольшей.

Задача 1. Функция издержек имеет вид . На начальном этапе фирма организует производство так, чтобы минимизировать средние издержки A(x). В дальнейшем на товар устанавливается цена, равная 4 усл.ед. за единицу. На сколько единиц товара фирме следует увеличить выпуск?

Решение. Средние издержки принимают минимальное значение при x=10. Предельные издержки . При установившейся цене оптимальное значение P(x) выпуска задаётся условием максимизации прибыли: , т.е. 4=M(x), откуда . Таким образом, производство следует увеличить на 10 единиц.

Задача 2. Определить оптимальное для производителя значение выпуска x0, при условии, что весь товар реализуется по фиксированной цене за единицу p=14 , если известен вид функции издержек .

Решение. По формуле прибыли получаем, .

Страница:  1  2  3  4  5  6  7  8  9 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы