Типовой расчет
При имеем:
то есть ряд расходится.
Окончательно, получаем ряд расходится при любом Х
Ответ:
9. Найти область сходи
мости функционального ряда
Решение.
Воспользуемся признаком Даламбера:
.
В данном примере:
,
.
Следовательно, ряд сходится при любом Х, т.е.
Ответ: .
10. Найти сумму ряда:
Решение.
Найдём область абсолютной сходимости ряда, пользуясь признаком Даламбера:
то есть . Ряд сходится для тех значений Х, для которых , то есть , .
При ряд расходится, так как .
Следовательно, .
Перепишем данный ряд:
Обозначим сумму трёх рядов через , и соответственно, тогда
.
Определяем область сходимости этих рядов, пользуясь признаком Даламбера:
1) :
то есть . Ряд сходится для тех значений Х, для которых , то есть , .
Следовательно, .
2) :
то есть . Ряд сходится для тех значений Х, для которых , то есть , .
Следовательно, .
3) :
то есть . Ряд сходится для тех значений Х, для которых , то есть , .
Следовательно, .
Найдём сумму ряда .
Это сумма бесконечной геометрической прогрессии: , тогда:
.
Найдём сумму ряда .
.
Обозначим сумму ряда в скобках за и проинтегрируем:
.
Продифференцируем :
.
Отсюда:
сумму ряда .
.
Обозначим сумму ряд в скобках за и проинтегрируем:
.
Тогда, продифференцируем :
Отсюда:
.
Следовательно:
для всех .
Ответ: Скачать реферат