Кривые на плоскости

· Подерой лемнискаты является синусоидальная спираль

\textstyle \rho^{\frac{2}{3}}=(c\sqrt{2})^{\frac{2}{3}}\cos\frac{2}{3}\varphi.

· Лемниската сама является подерой равносторонней гиперболы.

Собственные свойства:

Гравитационное свойство лемнискаты

· Кривая является геометрически

м местом точек, симметричных с центром равносторонней гиперболы относительно её касательных.

· Отрезок биссектрисы угла между фокальными радиус-векторами точки лемнискаты равен отрезку от центра лемнискаты до пересечения её оси с этой биссектрисой.

· Материальная точка, движущаяся по кривой под действием однородного гравитационного поля, пробегает дугу за то же время, что и соответствующую хорду. При этом ось лемнискаты составляет угол 45^\circс вектором напряжённости поля, а центр лемнискаты совпадает с исходным положением движущейся точки.

· Площадь полярного сектора \varphi\in[0,\alpha], при \textstyle 0\leqslant\alpha\leqslant\frac{\pi}{4}:

\textstyle S(\alpha)=\frac{c^2}{2}\sin2\alpha

o В частности, площадь каждой петли \textstyle 2S\left (\frac{\pi}{4}\right )=c^2, то есть площадь, ограниченная кривой, равна площади квадрата со стороной c\sqrt{2}.

· Перпендикуляр, опущенный из фокуса лемнискаты на радиус-вектор какой-либо её точки, делит площадь соответствующего сектора пополам.

· Длина дуги лемнискаты между точками \varphi_1=0и \varphi_2=\varphiвыражается эллиптическим интегралом рода:

·

\textstyle L(\varphi)=c\int\limits_0^\varphi\frac{\mathrm{d}\varphi}{\sqrt{1-2\sin^2\varphi}}=\frac{c}{\sqrt{2}}\int\limits_0^\theta\frac{\mathrm{d}\theta}{\sqrt{1-\frac{1}{2}\sin^2\theta}}=\frac{c}{\sqrt{2}}F\left(\theta,\frac{1}{\sqrt{2}}\right),где 2\sin^2\varphi=\sin^2\theta.

o В частности, длина всей лемнискаты

\textstyle 4L\left(\frac{\pi}{4}\right)=2c\sqrt{2}\,K\left(\frac{1}{\sqrt{2}}\right)\approx 5{,}9 c.

Приложение

В геометрии, синусоидальная спираль — семейство кривых, определяемое уравнением в полярной системе координат:

rn = ancos(nθ),

где a — ненулевая константа и n — рациональное число, не равное нулю. С учетом возможности поворота кривой относительно начала координат уравнение также может быть записано в виде:

rn = ansin(nθ)

Использование термина «спираль» в данном случае не является точным, т. к. получаемые кривые по форме скорее напоминают цветок. Многие известные кривые являются частными случаями синусоидальной спирали:

· Прямая (n = −1)

· Окружность (n = 1)

· Гипербола (n = −2)

· Парабола (n = −1/2)

· Кардиоида (n = 1/2)

· Лемниската Бернулли (n = 2)

Впервые была изучена Маклореном.

Страница:  1  2  3  4 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы