Качественное исследование в целом двумерной квадратичной стационарной системы с двумя частными интегралами в виде кривых третьего и первого порядков
g2=a, b3=a2,
g3= -a2,d=a3, (1.36)
m= -n, p= -an.
Теорема
1.3 Система (1.1) имеет два частных интеграла вида (1.4) и (1.18) с коэффициентами, определенными формулами (1.36), при условии, что коэффициенты системы (1.1) выражаются через параметры по формулам (1.35).
2 ИССЛЕДОВАНИЕ ПОВЕДЕНИЯ ТРАЕКТОРИЙ СИСТЕМЫ НА ПЛОСКОСТИ
2.1 Исследование системы (1.1) с коэффициентами, заданными формулами (1.35) в конечной плоскости
Пусть мы имеем систему (1.1), коэффициенты которой определяются согласно формулам (1.35),т.е. систему:
(2.1)
Интегральные кривые (1.4),(1.18), согласно формулам (1.36), имеют вид:
x3+12ax2-axy+ay2+a2x-a2y+a3=0, (2.2)
-nx+ny-an=0. (2.3)
Найдем состояния равновесия системы (2.1). Приравняв правые части системы к нулю и исключив переменную x, получим следующее уравнение для определения ординат состояний равновесия:
8192y4-11776ay3+5480a2y2-825a3y=0. (2.4)
Из (2.4) получаем, что
y0=0, y1=a, y2=a, y3=a. (2.5)
Абсциссы точек покоя имеют вид:
x0=0, x1= -a, x2= -a, x3= -a. (2.6)
Согласно (2.5) и (2.6) заключаем, что система (2.1) имеет четыре состояния равновесия - , , , .
Исследуем поведение траекторий в окрестностях состояний равновесия , , , .
1. Исследуем точку .
Составим характеристическое уравнение в точке [10, с. 1760-1765]
Отсюда
(2.7)
Следовательно, характеристическое уравнение примет вид:
==0.
,
Характеристическими числами для точкисистемы (2.1) будут
.
Корни - действительные, различных знаков не зависимо от параметра a. Следовательно, точка - седло.
2. Исследуем точку .
Составим характеристическое уравнение в точке A. Согласно
равенствам (2.7) характеристическое уравнение примет вид:
,
,
то есть
, .
Корни - действительные и одного знака, зависящие от параметра a. Если a<0, то точка - устойчивый узел, если a>0, то точка -неустойчивый узел.
3. Исследуем точку .
Применяя равенства (2.7), составим характеристическое уравнение в точке B:
, .
Корни - действительные и одного знака. Следовательно, точка - седло при любом параметре a .
4. Исследуем точку .
Учитывая выражения (2.7), составим характеристическое уравнение в точке:
,
Характеристическими числами для точки системы (2.1) будут
,
Корни - действительные и одного знака.Следовательно точка - устойчивый узел, если a>0 и неустойчивый узел, если a<0 .
2.2 Исследование бесконечно-удаленной части плоскости
Очень важным для исследования вопроса о наличии замкнутых траекторий являются сведения о поведении траекторий при удалении в бесконечность, то есть исследование бесконечно-удаленных частей плоскости.
Для этого воспользуемся преобразованием Пуанкаре [7]:
, (2.8)
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах