Дифференциальные уравнения
рис.2
На первом, втором и четвертом интервалах вторая производная у′′ положительна и дуга исследуемой кривой вогнута; на третьем интервале у′′ отрицательна – дуга выпукла.
При переходе через точки х = 0 у′′ меняет свой знак, поэтому х= 0 – абсцисса точки перегиба.
Следовательно
С(0;1) – точка перегиба графика функции.
При переходе через точку х = 3√3 у′′ меняет свой знак, поэтому х= 3√3 - абсцисса точки перегиба.
Следовательно – точка перегиба графика функции.
6. Так как точек разрыва у данной функции нет, соответственно вертикальной асимптоты она не имеет. Для определения уравнения наклонной асимптоты у=kx + b воспользуемся формулами:
Тогда
При вычислении пределов использовалось правило Лопиталя.
у=kx + b, у= 0*х + 1 = 1
Значит прямая у=1 есть горизонтальная асимптота графика исследуемой функции.
рис. 3
Задача №7
Найти неопределенные интегралы и результаты интегрирования проверить дифференцированием.
Решение
а) Применяя свойства неопределенного интеграла и формулы табличных интегралов имеем:
Задача №8
Вычислить объем тела, образованного вращением оси ОХ фигуры, ограниченной линиями ху=4; х=1; х=4; у=0. Сделать чертеж.
Решение
Объем тела, образованного вращением оси ОХ фигуры, ограниченной линиями определяется по формуле:
Подставим в формулу (1) у = 4/х, х1 = 1, х2 = 4, получим:
Ответ: объем тела вращения равен 12π
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах