Дифференциальные уравнения

рис.2

На первом, втором и четвертом интервалах вторая производная у′′ положительна и дуга исследуемой кривой вогнута; на третьем интервале у′′ отрицательна – дуга выпукла.

При переходе через точки х = 0 у′′ меняет свой знак, поэтому х= 0 – абсцисса точки перегиба.

Следовательно

С(0;1) – точка перегиба графика функции.

При переходе через точку х = 3√3 у′′ меняет свой знак, поэтому х= 3√3 - абсцисса точки перегиба.

Следовательно – точка перегиба графика функции.

6. Так как точек разрыва у данной функции нет, соответственно вертикальной асимптоты она не имеет. Для определения уравнения наклонной асимптоты у=kx + b воспользуемся формулами:

Тогда

При вычислении пределов использовалось правило Лопиталя.

у=kx + b, у= 0*х + 1 = 1

Значит прямая у=1 есть горизонтальная асимптота графика исследуемой функции.

рис. 3

Задача №7

Найти неопределенные интегралы и результаты интегрирования проверить дифференцированием.

Решение

а) Применяя свойства неопределенного интеграла и формулы табличных интегралов имеем:

Задача №8

Вычислить объем тела, образованного вращением оси ОХ фигуры, ограниченной линиями ху=4; х=1; х=4; у=0. Сделать чертеж.

Решение

Объем тела, образованного вращением оси ОХ фигуры, ограниченной линиями определяется по формуле:

Подставим в формулу (1) у = 4/х, х1 = 1, х2 = 4, получим:

Ответ: объем тела вращения равен 12π

Страница:  1  2  3 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы