Геометрия места точек на плоскости

6. Даны две прямые, пересекающиеся в точке O. Найдите ГМТ X, для которых сумма длин проекций отрезков OX на эти прямые постоянна.

Решение: Пусть a и b — единичные векторы, параллельные данным прямым; x равен вектору ох . Сумма длин проекций вектора x на данные прямые равна |(a,x)| + |(b,x)| = |(a±b,x)|, причем смена знака происходит на перпендикулярах, восставленных из точки O к данным прям

ым. Поэтому искомое ГМТ — прямоугольник, стороны которого параллельны биссектрисам углов между данными прямыми, а вершины лежат на указанных перпендикулярах.

7. Даны окружность S и точка M вне ее. Через точку M проводятся всевозможные окружности S1, пересекающие окружность S; X — точка пересечения касательной в точке M к окружности S1 с продолжением общей хорды окружностей S и S1. Найдите ГМТ X.

Решение: Пусть A и B — точки пересечения окружностей S и S1. Тогда XM2 = XA . XB = XO2 - R2, где O и R — центр и радиус окружности S. Поэтому XO2 - XM2 = R2, а значит, точки X лежат на перпендикуляре к прямой OM.

8. Даны две непересекающиеся окружности. Найдите геометрическое место точек центров окружностей, делящих пополам данные окружности (т. е. пересекающих их в диаметрально противоположных точках).

Решение: Пусть O1 и O2 — центры данных окружностей, R1 и R2 — их радиусы. Окружность радиуса r с центром X пересекает первую окружность в диаметрально противоположных точках тогда и только тогда, когда r2 = XO12 + R12, поэтому искомое ГМТ состоит из таких точек X, что XO12 + R12 = XO22 + R22, все такие точки X лежат на прямой, перпендикулярной O1O2.

9. Внутри окружности взята точка A. Найдите геометрическое место точек пересечения касательных к окружности, проведенных через концы всевозможных хорд, содержащих точку A.

Решение:Пусть O — центр окружности, R — ее радиус, M — точка пересечения касательных, проведенных через концы хорды, содержащей точку A, P — середина этой хорды. Тогда OP * OM = R2 и OP = OA cos f, где f = AOP. Поэтому AM2 = OM2 + OA2 - 2OM * OA cos f = OM2 + OA2 - 2R2, а значит, величина OM2 - AM2 = 2R2 - OA2 постоянна. Следовательно, все точки M лежат на прямой, перпендикулярной OA.

10. Найдите геометрическое место точек M, лежащих внутри ромба ABCD и обладающих тем свойством, что AMD + BMC = 180o.

Решение: Пусть N — такая точка, что вектора MN = DA. Тогда NAM = DMA и NBM = BMC, поэтому четырехугольник AMBN вписанный. Диагонали вписанного четырехугольника AMBN равны, поэтому AM| BN или BM| AN. В первом случае AMD = MAN = AMB, а во втором случае BMC = MBN = BMA. Если AMB = AMD, то AMB + BMC = 180o и точка M лежит на диагонали AC, а если BMA = BMC, то точка M лежит на диагонали BD. Ясно также, что если точка M лежит на одной из диагоналей, то AMD + BMC = 180o.

11. а) Дан параллелограмм ABCD. Докажите, что величина AX2 + CX2 - BX2 - DX2 не зависит от выбора точки X.

б) Четырехугольник ABCD не является параллелограммом. Докажите, что все точки X, удовлетворяющие соотношению AX2 + CX2 = BX2 + DX2, лежат на одной прямой, перпендикулярной отрезку, соединяющему середины диагоналей.

Решение: Пусть P и Q — середины диагоналей AC и BD. Тогда AX2 + CX2 = 2PX2 + AC2/2 и BX2 + DX2 = 2QX2 + BD2/2, поэтому в задаче б) искомое ГМТ состоит из таких точек X, что PX2 - QX2 = (BD2 - AC2)/4, а в задаче a) P = Q, поэтому рассматриваемая величина равна (BD2 - AC2)/2.

Литература

1. Погорелов А.В. Геометрия: Учебник для 7-9 классов общеобразовательных учреждений. – М.: Просвещение, 2000, с. 61.

2. Савин А.П. Метод геометрических мест /Факультативный курс по математике: Учебное пособие для 7-9 классов средней школы. Сост. И.Л. Никольская. – М.: Просвещение, 1991, с. 74.

3. Смирнова И.М., Смирнов В.А. Геометрия: Учебник для 7-9 классов общеобразовательных учреждений. – М.: Мнемозина, 2005, с. 84.

4. Шарыгин И.Ф. Геометрия. 7-9 классы: Учебник для общеобразовательных учебных заведений. – М.: Дрофа, 1997, с. 76.

5. Интернет ресурс: http://matschool2005.narod.ru/Lessons/Lesson8.htm

Страница:  1  2  3 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы