Вероятностные процессы и математическая статистика в автоматизированных системах
4) Построить графики зависимости отклика от каждого из факторов Y=f(Xi) при фиксированных значениях остальных факторов (каждый рисунок должен содержать 3-4 кривые).
5) Применяя один из методов оптимизации, найти в исследованной области оптимальные сочетания факторов, обеспечивающие максимальное и минимальное значения отклика.
6) Построить двумерные сечения поверхности отклика, соответст
вующие пересечению поверхности с плоскостями Xi=Ximax. Для этого в уравнение регрессии необходимо подставить значение этого фактора, и по полученным двухфакторным уравнениям рассчитать, а потом построить изолинии поверхности отклика (кривые равного выхода).
7) Определить типы кривых равного выхода.
8) Используя двумерные сечения поверхности, выполнить анализ влияния факторов в изученных интервалах их изменения на функцию отклика.
2. Этапы планирования и статической обработки результатов эксперимента для построения модели 2-го порядка
2.1 Построение модели плана II порядка
Для построения плана II порядка можно использовать следующую модель:
(2)
Для этого необходимо провести эксперимент так, чтобы каждый фактор варьировался на трех уровнях. Простейшим решением этой задачи является план типа 3k. Реализация этого плана для k>3 требует большого числа опытов.
Для построения модели второго порядка обычно используют ортогональный план первого порядка в качестве ядра, на котором достраивается план второго порядка, поэтому такие планы называются композиционными и соответствуют шаговой идее построения планов.
Для удобства работы с приведенной моделью II порядка, с помощью обозначений (3) преобразуем ее к виду (2’):
(3)
(2’)
Задача заключается в том, чтобы по результатам наблюдений определить значения коэффициентов bi, дисперсии и доверительные границы для них, а также определить их значимость.
Согласно МНК, для нахождения коэффициентов bi, необходимо минимизировать функцию:
(4)
где N – количество опытов;
xui –значение i-й переменной в u-м опыте;
yu – значение экспериментальных y в u-м опыте;
Из условия минимизации функции ss, можно получить систему нормальных уравнений МНК:
(5)
Представив все результаты в матричной форме, получим:
, , , (6)
где X – матрица условий эксперимента; Y – матрица результатов опытов; B – матрица коэффициентов.
Умножив транспонированную матрицу X на матрицу X, получим матрицу системы нормальных уравнений, которая называется информационной матрицей Фишера (матрицей моментов):
(7)
Умножив транспонированную матрицу X на матрицу Y, получим:
(8)
Используя данные обозначения, систему нормальных уравнений можно записать в матричной форме:
(9)
Обозначая обратную матрицу моментов как:
(10)
получим выражение для матрицы коэффициентов:
(11)
Все статистические свойства коэффициентов линии регрессии определяется матрицей дисперсий ковариаций.
(12)
где cov(bi, bj) – ковариации коэффициентов bi, и bj;
S2(bi) – дисперсия коэффициента bi;
S2(y) – дисперсия опыта.
Дисперсию опыта можно определить по формулам:
(13)
(14)
где m – количество параллельных опытов.
Если параллельные опыты не проводятся, то для оценки дисперсии опыта ставятся эксперименты в центре плана. Тогда дисперсия определяется по формуле:
(15)
где - количество опытов в центре плана.
Так как ядро плана ортогонально, то для сохранения ортогональности композиционного плана необходимо при построении матрицы планирования обеспечить условия:
Величина зависит от фактора и от плеча d:
;
Для k=3 ядро =15, =11/15=0.7303, d=1.2154
2.2 Кодирование факторов
Кодирование факторов используется для перевода натуральных факторов в безразмерные величины, чтобы построить стандартную план – матрицу эксперимента.
Для перевода заполняется таблица кодирования факторов на двух уровнях. В качестве 0-го уровня обычно выбирается центр интервала, в котором предполагается вести эксперимент.
Связь между кодовым и натуральным значениями фактора:
(16)
где Xi – натуральное значение фактора;
Xi0 –значение этого фактора на нулевом уровне;
dI – интервал варьирования факторов.
Составим таблицу кодирования факторов, используя исходные данные.
Таблица 1 - Таблица кодирования факторов
2.3 Составление план – матрицы
В план – матрице должны быть указаны все возможные комбинации уровней факторов.
Таблица 2 – Расширенная план – матрица ортогонального плана
2.4 Проверка воспроизводимости опытов
При одинаковом числе параллельных этапов воспроизводимость опытов определяется по критерию Кохрена.
Для этого сначала считаются дисперсии, характеризующие рассевание результатов на каждом u-м опыте.
Проверка воспроизводимости опытов показана на рисунке 2.
Рисунок 2- Воспроизводимость опытов
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах