Анализ надёжности и резервирование технической системы
Вычисление структурных функций
Для рассматриваемой схемы структурная функция S(Z) имеет вид
S(Z) = β1( α(β2( х1 х2)х3β3( х5 х6)) х4 ).
В этом выражении операция β2 предполагает преобразование двух элементов х1,х2 в один эквивалентный структурный элемент (который так и обозначим – β2), β3 состоит также из дв
ух элементов х5, х6 (которые тоже будут преобразованы в один элемент – β3). Операция α предполагает преобразование двух эквивалентных структурных элементов β2,β3 и одного элемента х3. При этом эквивалент α и элемент х4 вместе образуют два параллельно соединенных (в смысле надежности) элемента, которые посредством операции β1 превращаются в один эквивалентный элемент с соответствующей функцией распределения вероятностей состояний.
Вычислим выражения для каждого эквивалента:
β2 = (p1[40]+q1[0])( p2[60]+q2[0]) =
= p1 p2[40+60] + p1 q2[40+0] + q1 p2[0+60] + q1 q2[0+0] =
= 0,9•0,9[100] + 0,9•0,1[40] + 0,1•0,9[60] + 0,1•0,1[0] =
= 0,81[100]+0,09[40] + 0,09[60]+0,01[0]= 1 (проверка).
Т.к. элементы х5 и х6 полностью идентичны элементам х1 и х2, то операция β3:
β3 = 0,81[100] + 0,09[60] +0,09[40]+0,01[0].
α= (0,81[100] + 0,09[60] +0,09[40]+0,01[0])•(0,9[70]+0,1[0]) • (0,81[100]+ +0,09[60] + 0,09[40] +0,01[0]) = (0,81•0,9[min{100;70}]+ 0,81•0,1[min{100;0}] + 0,09•0,9[min{60;70}] + 0,09•0,1[min{60;0}] + 0,09•0,9[min{40;70}] + +0,09•0,1[min{40;0}]+0,01•0,9[min{0;70}] + 0,01•0,1[min{0;0}]) • (0,81[100] + 0,09[60] +0,09[40]+0,01[0]) =
=(0,729[70]+ 0,081[0] + 0,081[60]+0,009[0] + 0,081[40] +0,009[0]+0,009[0] + +0,001[0]) • (0,81[100] + 0,09[60] +0,09[40]+0,01[0])=
=(0,729[70]+0,081[60]+0,081[40]+0,109[0]) • (0,81[100]+0,09[60]+ +0,09[40]+0,01[0]) =0,729•0,81[min{70;100}]+ 0,729•0,09[min{70;60}] + 0,729•0,09[min{70;40}] + 0,729•0,01[min{70;0}] + 0,081•0,81[min{60;100}]+ 0,081•0,09[min{60;60}] + 0,081•0,09[min{60;40}] + 0,081•0,01[min{60;0}]+ 0,081•0,81[min{40;100}]+ 0,081•0,09[min{40;60}] + 0,081•0,09[min{40;40}] + 0,081•0,01[min{40;0}]+ 0,109•0,81[min{0;100}]+ 0,109•0,09[min{0;60}] + 0,109•0,09[min{0;40}] + 0,109•0,01[min{0;0}] =
= 0,59049[70]+ 0,06561[60] + 0,06561[40] + 0,00729[0] + 0,06561[60]+ 0,00729[60] + 0,00729[40] + 0,00081[0]+ 0,06561[40]+ 0,00729[40] + 0,00729[40] + 0,00081[0]+ 0,08829[0]+ 0,00981[0] + 0,00981[0] + 0,00109[0]=
(складываем вероятности при одинаковой пропускной способности)
= 0,59049[70]+0,13851[60]+0,15309[40]+0,11791[0] =1 (проверка).
S(Z) =β1( α х4 ) = (0,59049[70]+0,13851[60]+0,15309[40]+0,11791[0]) •
(0,95[90]+ 0,05[0]) =
= 0,59049•0,95[70+90] + 0,59049•0,05[70+0] + 0,13851•0,95[60+90] + 0,13851•0,05[60+0] + 0,15309•0,95[40+90] + 0,15309•0,05[40+0] + 0,11791•0,95[0+90] + 0,11791•0,05[0+0]=
= 0,56097[160] + 0,02952[70] + 0,13159[150] + 0,00692[60]+ 0,14544[130]+ 0,00765[40] + 0,11202[90] + 0,00589[0] =
(суммируем и упорядочим вероятности по значению пропускной способности)
= 0,56097[160]+ 0,13159[150]+ 0,14544[130] + 0,11202[90]+ 0,02952[70] + +0,00692[60]+ 0,00765[40]+ 0,00589[0]= 1.
Оценка расчетных состояний
Полученная функция S(Z) позволяет построить зависимость показателя надежности объекта (ВБР) от уровня нагрузки - P[Z ≥ Zнk]. Для этого следует просуммировать только те слагаемые функции S(Z), для которых значение нагрузки больше или равно заданной.
Расчеты удобно представить в виде табл. 3. По данным таблицы построен график.
Таблица 3
Зависимость ВБР системы от нагрузки
Zнk | S(Z) = β1( α(β2( х1 х2)х3β3( х5 х6)) х4 ) | P[Z≥Zнk] |
0 |
0,56097[160]+ 0,13159[150]+ 0,14544[130] + 0,11202[90]+ 0,02952[70] +0,00692[60]+ 0,00765[40]+ 0,00589[0] | 1 |
30 |
0,56097[160]+ 0,13159[150]+ 0,14544[130] + 0,11202[90]+ 0,02952[70] +0,00692[60]+ 0,00765[40] | 0,99411 |
50 |
0,56097[160]+ 0,13159[150]+ 0,14544[130] + 0,11202[90]+ 0,02952[70] +0,00692[60] | 0,98646 |
70 |
0,56097[160]+ 0,13159[150]+ 0,14544[130] + 0,11202[90]+ 0,02952[70] | 0,97954 |
90 |
0,56097[160]+ 0,13159[150]+ 0,14544[130] + 0,11202[90] | 0,95002 |
130 |
0,56097[160]+ 0,13159[150]+ 0,14544[130] | 0,838 |
150 |
0,56097[160]+ 0,13159[150] | 0,69256 |
160 |
0,56097[160] | 0,56097 |
180 |
- | 0 |
Рис. 2. Показатели надежности установки в зависимости от нагрузки
Анализ графика в контрольных точках показывает:
· область вблизи номинальной нагрузки, до 70 ед., обеспечена пропускной способностью системы с вероятностью не менее 0,97954;
· максимальная нагрузка равна предельной пропускной способности и вероятность ее обеспечения минимальна.
Обеспечение нормативного уровня надежности установки
Из таблицы 2 следует, что при расчетной нагрузке 70 ед. вероятность безотказной работы установки P[Z ≥ 70] = 0.97954 не соответствует заданному нормативному уровню P норм = 0.98. Следовательно, требуется повышение надежности установки, которое в данном случае может быть обеспечено вводом дополнительных элементов. Следует определить тип элементов (по значению вероятности и пропускной способности), их место на схеме и количество дополнительных - резервных, - элементов. При этом затраты на резервирование должны быть минимальными.
Для усиления этой схемы добавим один резервный элемент параллельно х3. Получившаяся схема с резервированием изображена на рисунке 3.
Рис. 3. Схема с резервированием.
Возьмём в качестве резервного r элемент типа А(70, 0.9, 8), так как его пропускная способность удовлетворяет расчётной.
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах