Операторные уравнения

Введение

Функциональный анализ – мощное средство для решения математический задач, возникающих в реальных ситуациях, он имеет множество приложений в различных областях математики, его методы проникают в смежные технические дисциплины.

Многие задачи математической физики, теории упругости, гидродинамики сводятся к отысканию решения дифференциального линейного уравнени

я, что, в свою очередь, приводит к задаче отыскания решения уравнения Аx = y с линейным оператором А. В данной работе рассмотрены два метода решения операторных уравнений.

Цель данной работы: рассмотреть основы теории линейных операторов и методы решения операторных уравнений – метод малого параметра и метод продолжения по параметру, показать применение этих методов к решению задач.

Изучив имеющийся материал по данной теме, я поставила перед собой следующие задачи:

1. раскрыть некоторые основы теории линейных операторов, необходимые для освоения методов решения операторных уравнений;

2. проиллюстрировать на конкретных примерах способы решения операторных уравнений и дать пояснения по ходу решения конкретных задач.

Так как выделение из функционального анализа его прикладной части, содержащей конструктивные методы получения решений задач, преследует методическую цель – сделать эти методы доступнее тем, кто занимается приложениями математики. Поэтому данная работа разделена на две главы, в первой содержатся необходимые теоретические обоснования способов решения операторных уравнений и суть обоих методов, а во второй – решения конкретных задач.

Глава 1. Операторные уравнения

§1.Определение линейного оператора

Пусть X и Y – линейные пространства, оба вещественные или оба комплексные.

Оператор А: X → Y с областью определения D(А) называется линейным, если

А(λ1x1 + λ2x2) = λ1А(x1) + λ2А(x2)

для любых x1,x2 ÎD и любых скаляров λ1 и λ2.

Пусть X и Y – нормированные пространства и А: X → Y, где А – линейный оператор, всюду заданный в X (т.е. D(А) = X).

Оператор А называется непрерывным в точке x0 ÎX, если Аx → Аx0 при x → x0. Но судить о непрерывности линейного оператора в различных точках x0 ÎX можно по непрерывности его в нуле пространства X.

Теорема 1. Пусть линейный оператор А всюду задан в банаховом пространстве X и со значениями в банаховом пространстве Y непрерывен в точке 0 ÎX; тогда А непрерывен в любой точке x0 ÎX.

Доказательство. Рассмотрим равенство Аx – Аx0 = А (x – x0). Если x → x0, то z = x – x0 → 0. По непрерывности в нуле Аz → 0, но тогда Аx – Аx0 → 0, что и требовалось доказать.

Линейный оператор А называется непрерывным, если он непрерывен в точке x = 0.

Пусть S1(0) – замкнутый шар ||x|| ≤ 1 в банаховом пространстве X.

Будем называть линейный оператор А: X → Y ограниченным, если он ограничен на единичным шаре S1(0), т.е. если ограничено множество

{ ||Аx||, ||x|| ≤ 1}.

Согласно определению, если А ограничен, то существует постоянная с > 0 такая, что для любых x с ||x|| ≤ 1 справедливо неравенство

||Аx|| ≤ с (1)

Теорема 2. А ограничен тогда и только тогда, когда справедлива оценка

||Аx|| ≤ с ||x|| (2)

для любых x ÎX, где с – постоянная.

Теорема 3. Пусть А: X → Y, А – линейный оператор, X, Y – банаховы пространства. Для того чтобы А был непрерывным, необходимо и достаточно, чтобы он был ограниченным.

§2. Норма линейного оператора

В линейном пространстве непрерывных линейных операторов зададим норму следующим образом:

. (1)

Поясним, почему существует конечное число ||А||, определяемое для любого ограниченного оператора равенством (1). Так как А – ограничен, то множество

ограничено сверху. По теореме о верхней грани существует .

Из свойства sup M следует, что ||Аx|| ≤ ||А|| для всех x Î S1(0). Отсюда

||Аx|| ≤ ||А|| ||x||, (2)

справедливое для всех x Î X, включая x = 0. таким образом, ||А|| является наименьшей из констант в неравенстве ||Аx|| ≤ ||А||, и, значит, оценка (2) является наилучшей.

Пространство нормированных непрерывных линейных операторов, действующих из X в Y, будем обозначать L(X, Y).

§3.Обратные операторы

Системы линейных алгебраических уравнений, интегральные уравнения, а также различные задачи для обыкновенных дифференциальных уравнений и уравнений с производными часто могут быть записаны в виде линейного уравнения

Если существует обратный оператор , то решение задачи записывается в явном виде:

Важное значение приобретает теперь выявление условий, при выполнении которых обратный оператор существует и обладает теми или иными свойствами.

Пусть задан линейный оператор: А: X → Y, где X,Y – линейные пространства, причем его область определения D(A)X, а область значений R(A)Y.

Введем множество - множество нулей оператора А. заметим, что N(A) не пусто, так как 0 ÎN(A)

Теорема 4. Оператор А переводит D (А) в R (А) взаимно однозначно тогда и только тогда, когда N(A)=, (т.е. множество А нулей состоит только из элемента 0)

Теорема 5. Оператор А-1 существует и ограничен на R(A) тогда и только тогда, когда для некоторой постоянной m>0 и любого x ÎD(A)выполняется неравенство

. (1)

Введем теперь следующее важное понятие.

Будем говорить, что линейный оператор А: X → Y непрерывно обратим, если R(A)=Y , оператор обратим и A-1 ÎL(Y, X), (т.е. ограничен).

Обращаясь к теореме 5, мы сможем сформулировать следующее утверждение.

Теорема 6. Оператор А непрерывно обратим тогда и только тогда, когда R(A)=Y и для некоторой постоянной m>0 и для всех выполняется неравенство (1).

Страница:  1  2  3  4  5  6  7  8 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы