Разработка оболочки экспертной системы

Одной из основных характеристик экспертной системы является ее производительность, т.е. скорость получения результата и его достоверность (надежность). Исследовательские программы искусственного интеллекта могут и не быть очень быстрыми, можно примириться и с существованием в них отказов в отдельных ситуациях, поскольку, в конце концов, — это инструмент исследования, а не программный продукт. А

вот экспертная система должна за приемлемое время найти решение, которое было бы не хуже, чем то, которое может предложить специалист в этой предметной области.

Экспертная система должна обладать способностью объяснить, почему предложено именно такое решение, и доказать его обоснованность.

2.2 Структура экспертной системы

На рисунке 2.1 изображена обобщенная структура экспертной системы.

Рисунок 2.1 – Типовая структура экспертной системы

Следует учесть, что реальные ЭС могут иметь более сложную структуру, однако блоки, изображенные на рисунке, непременно присутствуют в любой действительно экспертной системе, поскольку представляют собой стандарт структуры современной ЭС.

Экспертные системы имеют две категории пользователей и два отдельных "входа", соответствующих различным целям взаимодействия пользователей с ЭС:

- обычный пользователь, которому требуется консультация ЭС - диалоговый сеанс работы с ней, в процессе которой она решает некоторую экспертную задачу.

- экспертная группа инженерии знаний, состоящая из экспертов в предметной области и инженеров знаний. В функции этой группы входит заполнение базы знаний, осуществляемое с помощью специализированной диалоговой компоненты ЭС - подсистемы приобретения знаний, которая позволяет частично автоматизировать этот процесс.

База знаний предназначена для хранения экспертных знаний о предметной области, используемых при решении задач экспертной системой.

База данных предназначена для временного хранения фактов или гипотез, являющихся промежуточными решениями или результатом общения системы с внешней средой, в качестве которой обычно выступает человек, ведущий диалог с экспертной системой.

Механизм логического вывода – механизм рассуждений, оперирующий знаниями и данными с целью получения новых данных из знаний и других данных, имеющихся в базе данных. Для этого обычно используется программно реализованный механизм дедуктивного логического вывода (какая-либо его разновидность).

Интерфейс пользователя служит для ведения диалога с пользователем, в ходе которого ЭС запрашивает у пользователя необходимые факты для процесса рассуждения, а также, дающая возможность пользователю в какой-то степени контролировать и корректировать ход рассуждений экспертной системы.

Подсистема объяснений необходима для того, чтобы дать возможность пользователю контролировать ход рассуждений и, может быть, учиться у экспертной системы.

Подсистема приобретения знаний служит для корректировки и пополнения базы знаний. В простейшем случае это – интеллектуальный редактор базы знаний, в более сложных экспертных системах – средства для извлечения знаний из баз данных, неструктурированного текста, графической информации и т.д.

2.3 Классификация экспертных систем

Для классификации ЭС используют следующие признаки:

способ формирования решения;

способ учета временного признака;

вид используемых данных;

число используемых источников решения знаний.

По способу формирования решения ЭС можно разделить на анализирующие и синтезирующие. В системах первого типа осуществляется выбор решения из множества известных решений на основе анализа знаний, в системах второго типа решение синтезируется из отдельных фрагментов знаний.

В зависимости от способа учета временного признака ЭС делят на статические и динамические. Статические ЭС предназначены для решения задач с неизменяемыми в процессе решения данными и знаниями, а динамические ЭС допускают такие изменения.

По видам используемых данных и знаний различают ЭС с детерминированными и неопределенными знаниями. Под неопределенностью знаний и данных понимаются их неполнота, ненадежность, нечеткость.

ЭС могут создаваться с использованием одного или нескольких источников знаний.

Экспертные системы делятся на различные виды в зависимости от решаемых задач. Задачи, которые решают экспертные системы:

Интерпретация – описание ситуации по информации, поступающей от датчиков и других источников.

Наблюдение – сравнение результатов интерпретации с ожидаемыми результатами.

Мониторинг – наблюдение в определенные промежутки времени.

Прогноз – это определение вероятных последствий заданных ситуацией, системы прогнозирования основываются на имитационном моделировании, которое отражает связи в реальный мир.

Диагностика – выявление причин неправильного функционирования системы по результатам наблюдения.

Ремонт – выполнение последовательности предписанных исправлений.

Планирование – построение последовательности действий для достижения желаемого результата.

Проектирование – построение конфигурации объектов с учетом ограничений.

Отладка – составление рецептов исправления неправильного функционирования системы, настройка отладочной системы.

Управление – адаптивное руководство поведения системы в целом (наблюдает, чтобы отследить на протяжении времени, классифицирует, диагностирует это отклонение, находит рецепт его устранения и осуществляет его применение).

Обучение – диагностирование, отладка, ремонт поведения обучаемого.

2.4 Характеристики экспертных систем

Экспертные системы можно характеризовать следующими особенностями:

• область применения,

• класс решаемых задач,

• метод (методы) представления знаний,

• метод (методы) решения задач (поиска решений),

• структуризация данных (фактов) предметной области,

• структуризация/неструктуризация знаний о решении задач,

• четкость/нечеткость данных,

• четкость/нечеткость знаний,

• монотонность/немонотонность процесса решения задач,

• метод (методы) приобретения (пополнения) знаний,

• вид пользовательского интерфейса,

• динамическая или статическая предметная область,

• интеграция с другими программными системами (СУБД, системами моделирования, графическими пакетами и т.д.).

2.5 Этапы создания экспертных систем

1 этап – Идентификация.

1. Определение участников и их ролей в процессе создания и эксплуатации экспертной системы.

В процессе создания экспертной системы могут участвовать следующие специалисты: инженеры по знаниям, эксперты, программисты, руководитель проекта, заказчики (конечные пользователи). При реализации сравнительно простых экспертных систем программистов может не быть. Роль инженера по знаниям – выуживание профессиональных знаний из экспертов и проектирование базы знаний экспертной системы и ее архитектуры. Программист необходим при разработке специализированного для данной экспертной системы программного обеспечения, когда подходящего стандартного (например, оболочки для создания экспертных систем) не существует или его возможностей не достаточно и требуются дополнительные модули.

Страница:  1  2  3  4  5  6  7 


Другие рефераты на тему «Программирование, компьютеры и кибернетика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2025 - www.refsru.com - рефераты, курсовые и дипломные работы