Условия фильтрации для реактивных лестничных четырехполюсников

Реактивный четырехполюсник называют лестничным, если образующие его РД поочередно включаются в продольные и поперечные ветви схемы.

Лестничные четырехполюсники образуют из Т- и П- образных четырехполюсников путем каскадного согласованного соединения их. Последние же получают путем соединения элементарных Г- образных полузвеньев Т- или П- образными сторонами, как показано на рисунках:

mg width=147 height=110 src="images/referats/1291/image014.gif">

Г - образное Симметричное Симметричное полузвено Т - образное звено П - образное звено

Рассмотрим условия фильтрации для Г- образного полузвена.

Условия фильтрации для реактивных четырехполюсников

Определим условия, при которых реактивный четырехполюсник (четырехполюсник без потерь) будет электрическим фильтром, т.е. устройством, имеющим в некоторой области частот полосу пропускания, а в другой - полосу задерживания.

Условия фильтрации (УФ) найдем для четырехполюсника в виде элементарного Г- образного полузвена, а затем распространим их на каскадное соединение, т.е. на Т- и П- образные звенья.

Ранее было получено соотношение, связывающее характеристическое затухание с параметрами XX и КЗ.

(1)

Для Г- образного полузвена найдем:

С учетом этого можно записать выражение для характеристического затухания Г- образного полузвена:

(1)

Как видно из формулы, характеристическое затухание зависит от соотношения сопротивлений продольной и поперечной ветвей четырехполюсника. Условились характеристической ПП считать область частот, где характеристическое затухание равно нулю.

Следовательно, в области частот, в которой модуль выражения (1) равен 1, ln=0 и фильтр имеет ПП. При всех же других частотах ac 0 т.е. расположена ПЗ.

Не трудно заметить, что модуль выражения (1) равен 1 в двух случаях:

а) при б) при

Если обозначить jA то

Таким образом, ПП реактивного четырехполюсника расположена на частотах, на которых справедливо неравенство

; ; ; ;

Видно, что данное неравенство имеет место при выполнении двух условий:

1. и должны иметь разные знаки;

2.

Фактически это и есть условие фильтрации (т.е. условие получения ПП) для реактивного Г- образного полузвена.

При составлении звеньев и более сложных фильтров из Г- образных полузвеньев, имеющих одинаковую частоту среза, затухание суммируется, следовательно условия фильтрации определяются Г- образным полузвеном.

Рассмотрим примеры применения УФ:

1) Данный четырехполюсник - ФНЧ.

Из графика видно, что условия фильтрации выполняются в полосе частот (0,ω0) поэтому данный четырехполюсник является ФНЧ.

Если L и С поменять местами, то нетрудно убедиться, что четырехполюсник будет ФВЧ.

2) Данный четырехполюсник - ПФ.

Определим условия фильтрации для мостового реактивного четырехполюсника.

Ранее мы установили, что ХПП лежит в области частот, где

В данном случае

и откуда

Полученное выражение будет отрицательным при противоположных знаках Za и Zb.

Таким образом ХПП для мостового симметричного четырехполюсника лежит в области частот, где Za и Zb имеют противоположные знаки.

Укажем, что мостовые звенья используются при построении фазовых корреляторов, кварцевых фильтров и других устройств.

Заключение

Отметить, что использование характеристических параметров для получения условий фильтрации дает возможность сравнительно легко определить тип фильтра и примерное расположение полос пропускания и задержания. Однако расчет фильтра по характеристическим параметрам является не оптимальным и не обладает должной гибкостью. Поэтому на практике все более широкое применение находят так называемые методы синтеза электрических фильтров по их рабочим параметрам, что и будет продемонстрировано в следующих лекциях.

Литература

1. Белецкий А.Ф. «Теория линейных электрических цепей » Москва 1986 с 368-383

2. Белецкий А.Ф. «Линейные устройства аппаратуры связи. Конспект лекций»

3. Бакалов В.П. «Теория электрических цепей» Москва «Радио и связь» 1998- с.368-390

Страница:  1  2 


Другие рефераты на тему «Физика и энергетика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2025 - www.refsru.com - рефераты, курсовые и дипломные работы