Статистическое изучение социально-экономического явления

Статистические распределения рядов признаков-факторов и результирующего признака

Исследуем статистическое распределение признаков Х1 с помощью интервального вариационного ряда:

Интервальный ряд для Х 1

dth=58 nowrap valign=bottom >

Х 1

F 1

Ср. цена тыс.руб.

0-1

21

603

1-2

14

554

2-3

8

532

3-4

4

420

4-5

2

414

5-6

1

379

Приведем графическое отображение ряда для Х1 в виде гистограммы и кумуляты:

Вычислим среднюю арифметическую, моду и медиану интервального ряда распределения для X1. Формула для вычисления среднего арифметического:

где– средняя по ряду распределения;

– средняя по i-му интервалу;

– частота i-го интервала (число автомобилей в интервале).

Мода – это наиболее часто встречающееся значение признака. Для интервального ряда мода определяется по формуле:

где– значение моды;

X0 – нижняя граница модального интервала;

h – величина модального интервала (1 год);

– частота модального интервала;

– частота интервала, предшествующая модальному;

– частота послемодального интервала.

Модальный интервал определяется по наибольшей частоте. Для ряда X1 наибольшее значение частоты равно 21, т.е. это будет интервал 0 лет , тогда значение моды:

Медиана – значение признака, лежащее в середине упорядоченного ряда распределения.

Номер медианы определяется по формуле:

где

n – число единиц в совокупности

т.к. медиана с дробным номером не бывает, то полученный результат указывает, что медиана находится между 25-й и 26-й величинами совокупности.

Значение медианы можно определить по формуле:

где– значение медианы;

– нижняя граница медианного интервала;

- номер медианы;

- накопленная частота интервала, предшествующая медианному;

- частота медианного интервала.

По накопленной частоте определяем, что медиана будет находиться в интервале от 1 года до 2-х лет , тогда значение медианы:

Для вычисления дисперсии воспользуемся следующей формулой:

где– дисперсия;

– среднее по i-му интервалу;

– среднее по ряду распределения;

– частота i-го интервала;

n – размер выборки (n=50).

Среднее квадратическое отклонение вычислим по следующей формуле:

где– дисперсия;

– среднее квадратическое отклонение;

Вычислим коэффициент вариации

где– коэффициент вариации;

– среднее квадратическое отклонение;

- среднее по ряду распределения.

Вычислим значения коэффициента ассиметрии:

где ;

– коэффициент ассиметрии;

– среднее квадратическое отклонение;

– среднее по i-му интервалу;

– среднее по ряду распределения;

Страница:  1  2  3  4  5  6  7  8 


Другие рефераты на тему «Социология и обществознание»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы