Статистическое изучение социально-экономического явления

– частота i-го интервала;

n – размер выборки (n=50).

Вычислим значения коэффициента эксцесса:

где

- коэффициент эксцесса;

– среднее квадратическое отклонение;

– среднее по i-му интервалу;

– среднее по ряду распределения;

– частота i-го интервала;

n – размер выборки (n=50).

Исследуем статистическое распределение признаков Х2 с помощью интервального вариационного ряда.

Для построения ряда распределения необходимо определить число групп и величину интервала. Для определения числа групп воспользуемся формулой Стерджесса:

гдеm – число групп (всегда целое);

n – число единиц в выборке, в нашем случае n= 50.

Вычислим m:

Величину интервала определим по формуле:

где Хmax – максимальное значение признака;

Хmin - минимальное значение признака;

m – число групп.

На основании полученных данных построим интервальный ряд для Х2:

Интервальный ряд для Х 2

Х 2

F 2

Ср. цена тыс.руб.

0 - 21

25

601

21 - 42

9

551

42 - 63

7

490

63 - 84

2

420

84 - 105

4

466

105 - 126

2

417

126 - 150

1

597

Приведем графическое отображение ряда для Х2 в виде гистограммы и кумуляты:

Вычислим среднюю арифметическую, моду и медиану интервального ряда распределения для X2. Формула для вычисления среднего арифметического:

где– средняя по ряду распределения;

– средняя по i-му интервалу;

– частота i-го интервала (число автомобилей в интервале).

Мода – это наиболее часто встречающееся значение признака. Для интервального ряда мода определяется по формуле:

где– значение моды;

– нижняя граница модального интервала;

h – величина модального интервала (1 год);

- частота модального интервала;

- частота интервала, предшествующая модальному;

- частота послемодального интервала.

Модальный интервал определяется по наибольшей частоте. Для ряда X1 наибольшее значение частоты равно 25, т.е. это будет интервал 0 до 21 тыс. км., тогда значение моды:

Медиана – значение признака, лежащее в середине упорядоченного ряда распределения.

Номер медианы определяется по формуле:

где

n – число единиц в совокупности

т.к. медиана с дробным номером не бывает, то полученный результат указывает, что медиана находится между 25-й и 26-й величинами совокупности.

Значение медианы можно определить по формуле:

где– значение медианы;

– нижняя граница медианного интервала;

- номер медианы;

- накопленная частота интервала, предшествующая медианному;

- частота медианного интервала.

По накопленной частоте определяем, что медиана будет находиться в интервале от 21 до 42 тыс. км., тогда значение медианы:

Для вычисления дисперсии воспользуемся следующей формулой:

где– дисперсия;

– среднее по i-му интервалу;

– среднее по ряду распределения;

Страница:  1  2  3  4  5  6  7  8 


Другие рефераты на тему «Социология и обществознание»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы