Проблема эфира в современной физике

Движение электрона в электрическом поле, например в поле заряженного плоского конденсатора, следует рассматривать как движение в анизотропной среде вращающегося (т.е. обладающего спином) тела. Действительно, между обкладками плоского конденсатора при его заряде возникает анизотропное электростатическое поле. Как известно, движение вращающегося тела в анизотропном поле приводит к искривлению тра

ектории тела таким образом, чтобы плоскость вращения совпадала бы с плоскостью анизотропии.

Концепция эфирной среды [7, 48] позволяет предсказать наиболее элементарные возмущения (частицы) которые могут в ней возникнуть. Выше было показано, что эфирная среда представляет собой регулярную пространственную решетку, состоящую из двух одинаковых по размеру, но противоположных по знаку частиц. Их взаимное притяжение заставит принять эти частицы очень строгое и точное друг относительно друга положение. Таким образом, пространственная решетка эфирной среды, в конечном итоге, будет весьма однородной. Однако мы может представить себе возникновение, из-за каких либо причин, дислокаций, или неоднородностей в пространственной структуре вакуума. Например, как это было рассмотрено выше, неоднородности в вакууме возникают при наличии атомов, ионов, электронов, т.е. тел, обладающих физической массой. Однако, по нашему мнению, в некоторых случаях могут возникать неоднородности без наличия физического тела. Представим себе простейшие виды таких неоднородностей (дислокаций). Например, можно себе представить наличие излишней частицы с положительным знаком, находящейся в середине однородной решетки. Это будет пример простейшей дислокации, которую можно назвать «с положительной избыточностью». Также можно представить, что в середине решетки будет находиться избыточная отрицательная частица. Такую дислокацию можно назвать дислокацией «с отрицательной избыточностью». Могут существовать и два других вида дислокаций. Один их этих видов представлен отсутствием в середине решетки положительного заряда. Назовем такой вид дислокации – «с положительной недостаточностью». Противоположный ему вид будет называться «с отрицательной недостаточностью». Таким образом, таких самых простых неоднородностей может быть четыре вида. Интересно отметить, что совмещение дислокации «с положительной избыточностью» и «с положительной недостаточностью» приведет к взаимной аннигиляции, уничтожению. То же самое произойдет при совмещении дислокаций «с отрицательной избыточностью» и «с отрицательной недостаточностью». Подобные дислокации (частицы) не будут обладать массой, свойственной физическому телу. Однако некий заряд, электромагнитную массу, эти «избыточные» и «недостаточные» частицы должны иметь. Они должны быть самыми малыми и элементарными из всех возможных.

Эфирная среда или вакуум действительно представляет, как писал Поль Дирак, безбрежный океан. Этот океан заполнен упругой, сильно сжатой электромагнитной материей. Сейчас трудно сказать, как энергия, заключенная в этой материи, может быть освобождена и использована. Несомненно то, что через эфирную среду, свободный космос, можно совершенно без малейших потерь передавать колоссальные количества энергии посредством электромагнитных колебаний большой интенсивности.

Последнее высказывание А. Эйнштейна относительно эфирной среды было сделано в 1952 г.: «Тем, что специальная теория относительности показала физическую эквивалентность всех инерциальных систем, она доказала несостоятельность гипотезы покоящегося эфира. Поэтому необходимо было отказаться от идеи, что электромагнитное поле должно рассматриваться как состояние некоторого материального носителя» [22, с. 753].

Однако объективные физические обоснования наличия эфирной среды с определенными и известными свойствами показывают, что это не так.

Заключение

Природа не любит пустоты. Практически все последние концепции физического вакуума основаны на этом постулате [1, 4, 11].

В свое время Ньютон представлял свет как поток корпускул, то есть частиц, распространяющихся прямолинейно. При встрече с препятствием (зеркалом) такие корпускулы отскакивали подобно тому, как отскакивают шары от твердой поверхности. Волновую теорию света разработал Х. Гюйгенс. В работе «трактат о свете» он полагает, что свет распространяется в виде упругого импульса в особой среде – эфире, заполняющем все пространство. Работы Френеля с определенностью показали, что свет имеет волновую природу. Опыты Герца позволили подтвердить предположение Д. Максвелла об электромагнитной природе световых волн.

Вместе с этим, электромагнитная волновая теория света не свободна от противоречий. Например, точно известно, что смещения в такой волне происходят в направлении, поперечном к направлению распространения. Однако такой вид смещений характерен только для твердых тел. Очень высокая скорость и очень малое затухание при распространении света от весьма далеких галактик приводит к выводу, что эфир, как носитель электромагнитной волны, близок по свойствам к абсолютно твердому телу с очень высокой упругостью. В то же время эфир может без трения проникать в физические тела и все эти тела, в том числе и твердые, могут совершенно свободно передвигаться в эфире.

Как следует из этого, до сих пор не выработана логически непротиворечивая физически обоснованная теория эфира (вакуума). Вместе с этим, отказ от наличия эфира означает отказ от светоносной среды, доставляющей нам от солнца живительную энергию. В повседневном быту каждый из нас пользуется радио- и телеприемниками, получающими через окружающий Землю эфир полезный сигнал из околоземного космоса. И именно волновые уравнения, полученные на основе предположения о наличии среды с определенными и известными свойствами, позволяют в точности рассчитывать траектории распространения электромагнитных волн.

Если же без оговорок принять корпускулярную теорию, то следует признать, что солнце, излучая фотоны в очень большом диапазоне энергий, посылало бы их к нам с разными скоростями. Однако, как достоверно известно, их скорость распространения постоянна и равна C = 2,9979246·108 м/сек [2]. Постоянство скорости распространения колебаний характерно только для однородных сред.

Таким образом, волновая теория света встречает меньше логических противоречий, чем корпускулярная. Однако волновая теория света обязательно требует среды – переносчика колебаний. Эта неуловимая среда, называемая в литературе эфиром, эфирной средой, вакуумом, имеет вполне определенные электромагнитные свойства [3]. Однако непротиворечивой физической модели вакуума до сих пор не создано.

Список литературы

1. Александров С.И. Деполяризация объемных упругих волн при рассеянии в случайно-неоднородной среде Физика Земли / С.И. Александров – М.: Наука, 1998.

2. Ацюковский В.А. Общая эфиродинамика. Моделирование структур вещества и полей на основе представлений о газоподобном эфире/ В.А. Ацюковский. – М.: Энергоатомиздат, 1990.

3. Бабаков И.М. Теория колебаний/И.М. Бабаков. – М.: Наука, 1968.

Страница:  1  2  3  4 


Другие рефераты на тему «Физика и энергетика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2025 - www.refsru.com - рефераты, курсовые и дипломные работы