Получение арсенида галлия

Содержание

Арсени́д га́ллия (GaAs)

Металлургические свойства GaAs

Выращивание кристаллов GaAs

Направленная кристаллизация

Зонная плавка

Метод Чохральского

Эпитаксиальные пленки арсенида галлия

Заключение

Используемая литература

Арсени́д га́ллия (GaAs)

Химическое соединение галлия и мышьяка. Важный полупроводник, трет

ий по масштабам использования в промышленности после кремния и германия. Используется для создания сверхвысокочастотных интегральных схем, светодиодов, лазерных диодов, диодов Ганна, туннельных диодов, фотоприёмников и детекторов ядерных излучений.

Некоторые электронные свойства GaAs превосходят свойства кремния. Арсенид галлия обладает более высокой подвижностью электронов, которая позволяет приборам работать на частотах до 250 ГГц.

Полупроводниковые приборы на основе GaAs генерируют меньше шума, чем кремниевые приборы на той же частоте. Из-за более высокой напряженности электрического поля пробоя в GaAs по сравнению с Si приборы из арсенида галлия могут работать при большей мощности. Эти свойства делают GaAs широко используемым в полупроводниковых лазерах, некоторых радарных системах. Полупроводниковые приборы на основе арсенида галлия имеют более высокую радиационную стойкость, чем кремниевые, что обусловливает их использование в условиях радиационного излучения (например, в солнечных батареях, работающих в космосе).

По физическим характеристикам GaAs - более хрупкий и менее теплопроводный материал, чем кремний. Подложки из арсенида галлия гораздо сложнее для изготовления и примерно впятеро дороже, чем кремниевые, что ограничивает применение этого материала.

Общие свойства:

Общие.

Название

Арсени́д га́ллия

Химическая формула

GaAs

Внешний вид

Тёмно-серые кубические кристаллы

Структура

Молекулярная масса

144.64 ат. ед.

Постоянная решётки

0.56533 нм

Кристаллическая структура

цинковой обманки

Физические

Агрегатное состояние

при н. у.

твёрдое

Точка плавления при н. у.

1513 K

Электронные

Ширина запрещённой зоны при 300 K

1.424 эВ

Электроны, эффективная масса

0.067 me

Лёгкие дырки,

эффективная масса

0.082 me

Тяжёлые дырки,

эффективная масса

0.45 me

Подвижность электронов при 300 K

9200 см²/ (В·с)

Подвижность дырок при 300 K

400 см²/ (В·с)

Химическая связь. Химическая связь в полупроводниковых соединениях типа АшВv по своей природе является промежуточной между ионной и ковалентной. В случае ковалентной связи каждый атом мышьяка должен отдать один электрон атома галлия для образования атомов с четырьмя валентными электронами. Чисто ионная связь требует, чтобы каждый атом галлия отдал три электрона атомам мышьяка с образованием ионов, удерживаемых в кристалле исключительно электростатическими силами. Нейтральная связь требует сохранения всеми атомами своих валентных электронов. Одним из критериев передачи заряда является общий заряд, связанный с каждым атомом.

Структура. Арсенид галлия имеет структуру кристалла сфалерита (цинковой обманки). Структура сфалерита может рассматриваться как комбинация двух вставленных одна в другую кубических гранецентрированных решеток, смещенных относительно друг друга на четверть диагонали куба и состоящих из одного сорта атомов каждая.

Валентная зона в арсениде галлия состоит из зоны тяжелых дырок, зоны легких дырок и из зоны обусловленной спин-орбитальным взаимодействием.

Эффективная масса носителей заряда и их взаимодействие с решеткой определяют подвижность электронов и дырок. Связь в решетке арсенида галлия сильнее чем, в элементарных полупроводниках, поскольку, помимо ковалентной связи, в них наблюдается небольшая доля ионной связи. Это приводит к ослаблению взаимодействия между носителями заряда и решеткой и к росту подвижности. Однако высокая подвижность электронов в арсениде галлия в первую очередь обусловлена малым значением их эффективной массы в нижней зоне проводимости.

Примеси в GaAs. Примеси, введенные в GaAs, могут занимать места Ga или As, образуя растворы замещения, либо входить в решетку парами, замещая соседние разноименные атомы, либо внедряться в междуузлие. Значительное влияние на поведение примесей в кристаллах GaAs оказывает взаимодействие атомов примеси с точечными дефектами, дислокациями и другими дефектами решетки.

Металлургические свойства GaAs

Благоприятное сочетание многих физических свойств делает относительно высокие концентрации остаточных примесей в монокристаллах арсенида галлия весьма затрудняют, определение коэффициентов распределения, коэффициентов диффузии и предельных растворимостей примесей. Обычно нелегированные монокристаллы GaAs характеризуются электронной электропроводностью и низким удельным сопротивлением. Особое внимание уделяется примесным атомам кремния. Легируя арсенид галлия радиоактивными атомами кремния, удалось установить, что до концентрации порядка 1017 см-3 все атомы кремния являются донорами с малой энергией ионизации, т.е. заменяют атомы галлия. При более высоких концентрациях часть атомов Si занимает узлы As и проявляет Акцепторные свойства в результате чего удельное сопротивление кристалла возрастает. Аналогичные результаты были получены для примеси германия.

При диффузионном легировании GaAs литием удельное сопротивление кристалла n-типа возрастает до десятка ом⋅см. В результате термообработки при высоких температурах удельное сопротивление снижается до 0,2 ом⋅см и кристалл становится p-типа. Предполагается, что литий может входить в решетку по междоузлиям, так и путем замещения атомов галлия. В междоузлиях литий является донором (Lii′), а в узлах - акцептором (LiGa′′). Эти два вида дефектов могут образовывать комплекс Lii′ LiGa′′, обладающий акцепторными свойствами.

Страница:  1  2  3  4 


Другие рефераты на тему «Физика и энергетика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы