Энергия
Промышленная революция - так мы часто называем эту эпоху великих открытий - существенно изменила течение жизни на нашей планете. Одним из ее последствий было окончательное падение феодализма, который уже не мог приспособиться к развитию новых производительных сил, и упрочение капиталистических производственных отношений. Джеймс Уатт изобрел паровую машину, которая раскрутила колесо истории до н
ебывалых прежде оборотов.
Паровую машину низкого давления Уатта совершенствовали многие мастера и инженеры. Среди них следует выделить американца Оливера Эванса. Преодолев многие препятствия, этот талантливый механик, полный энтузиазма и смелых идей, в 1801 г, приступил к сооружению малой паровой машины, в которой давление пара в десять раз превышало атмосферное. Уже первые две машины получились необычайно удачными, и в 1802 г. Эванс открыл в Филадельфии первый завод паровых машин высокого давления. Он поставил заказчикам до 50 машин мощностью от 7,4 до 29,4 кВт (10-40 л. с.).
В 1807 г. американский изобретатель Роберт Фултон сконструировал первый пароход “Клермонт”, который совершал регулярные рейсы по реке Гудзон между Нью-Йорком и Олбани. Успех “Клермонта” оказался настолько убедительным, что в 1819 г. в США был спущен на воду морской пароход.
Английский техник Джордж Стефенсон в 1823 г. основал завод по изготовлению подвижного состава для общественного транспорта, и в 1825 г.- через шесть лет после смерти Уатта - на трассе Стоктон - Дарлингтон начала действовать первая железная дорога.
В наши дни паровую машину скоро можно будет увидеть только в технических музеях, но и там мы будем смотреть на нее с уважением.
Итальянский физик Алессандро Вольта родился в 1745 г. Он продолжил эксперименты своего земляка Луиджи Гальвани и прославился изобретением электрической батареи (1800). В его честь мы называем основную единицу электрического напряжения вольтом. (В). Вольтову батарею-так называемый элемент-составляли два разных проводника электрического тока (электроды), погруженные в жидкость (электролит), через которую протекал электрический ток. В качестве электродов Вольта использовал медь и цинк, а электролитом служила соленая вода. Долгим и трудным был путь от этого первого источника постоянного тока до современной электрификации большей части нашей планеты. Остановимся на некоторых знаменательных событиях из истории электричества.
Первым убедительным доказательством полезности вольтова элемента было изобретение электрического телеграфа, которое чаще всего приписывают немецкому врачу и натуралисту Самуэлю Земмерингу (1809). Через два года английскому физику и химику Гемфри Дэви удалось получить между двумя угольными электродами электрическую дугу-светящуюся струю электрически заряженных частиц необычайно высокой температуры. Дэви был автором и ряда других открытий в зарождающейся области науки-электрохимии, изучающей связь между электрическими и химическими процессами и явлениями.
Затем последовало множество открытий, связанных с магнитными свойствами электрического тока. Французский физик Андре Ампер стал основоположником новой науки - учения об электромагнетизме. Отсюда оставался один шаг до создания электродвигателя, Этот решающий шаг помогли сделать великий английский физик и химик, бывший ученик переплетчика Майкл Фарадей, немецкий физик, живший и работавший в России, Герман Якоби и многие другие известные и неизвестные механики, физики и химики. Первые электродвигатели работали от усовершенствованных вольтовых элементов. Они обладали малой мощностью и постепенно были вытеснены двигателями переменного тока. Для этого потребовалось создать новые источники такого тока - генераторы, а затем турбины, чтобы приводить их в движение.
Путь к всеобщей электрификации проходил через множество крупных и мелких открытий и изобретений. Но это был логичный и целенаправленный путь. Электрическую энергию легко можно передавать на большие расстояния и непосредственно использовать для самых разнообразных целей. Все прежние машины и механизмы требовали “топлива”, т. е. источника энергии, непосредственно на месте: паровая машина не в состоянии работать без достаточного количества топлива, ветряная мельница - без ветра, водяная мельница - без потока воды. А электрический двигатель работает и за сотни километров от источника потребляемой им энергии.
Сколько людям нужно энергии
Рождение энергетики произошло несколько миллионов лет тому назад, когда люди научились использовать огонь. Огонь давал им тепло и свет, был источником вдохновения и оптимизма, оружием против врагов и диких зверей, лечебным средством, помощником в земледелии, консервантом продуктов, технологическим средством и т.д.
На протяжении многих лет огонь поддерживался путем сжигания растительных энергоносителей (древесины, кустарников, камыша, травы, сухих водорослей и т.п.), а затем была обнаружена возможность использовать для поддержания огня ископаемые вещества: каменный уголь, нефть, сланцы, торф.
Прекрасный миф о Прометее, даровавшем людям огонь, появился в древней Греции значительно позже того, как во многих частях света были освоены методы довольно изощренного обращения с огнем, его получением и тушением, сохранением огня и рациональным использованием топлива.
Сейчас известно, что древесина - это аккумулированная с помощью фотосинтеза солнечная энергия. При сгорании каждого килограмма сухой древесины выделяется около 20 000 кДж тепла (эта величина в теплотехнике именуется теплотой сгорания). Напомним также, что теплота сгорания бурого угла равна примерно 13000 кДж/кг, антрацита 25000 кДж/кг, нефти и нефтепродуктов 42000 кДж/кг, а природного газа 45000 кДж/кг. Самой высокой теплотой сгорания обладает водород -120000 кДж/кг.
Пришло время объяснить, что же такое энергия, т.е. величина, измеряемая килоджоулями. Известна и другая физическая величина - работа, имеющая ту же размерность, что и энергия, Зачем нужны два разных понятия?
Оказывается, вопрос имеет принципиальное значение. Энергия - слово греческое, означающее в переводе деятельность Термином "энергия" обозначают единую скалярную меру различных форм движения материи. Энергию можно получить при сгорании 1 кг угля или 1 кг нефти, которые называются энергоносителями. Законы физики утверждают: та работа, которую можно получить в реальных машинах и использовать на наши нужды, будет всегда меньше энергии, заключенной в энергоносителе. Энергия - это, по сути дела, энергетический потенциал (или просто потенциал), а работа - это та часть потенциала, которая дает полезный эффект. Разницу между энергией и работой называют диссипированной (или рассеявшейся) энергией. До сих пор по традиции еще применяют понятия потенциальной и кинетической энергии, хотя в действительности из-за огромного разнообразия видов энергии было бы целесообразно пользоваться единственным термином - энергия. Таким образом, работа совершается в процессе преобразования одних видов энергии в другие и характеризует полезную ее часть, полученную в процессе такого преобразования. Рассеянная в процессе совершения работы энергия неизменно превращается в тепло, которое сообщается окружающему пространству. Поскольку процессы преобразования одних видов энергии в другие бесконечны, любая работа в конце концов переходит в тепло, т.е. обесценивается. Это означает, что чем больше человечество добывает угля, нефти и других энергоресурсов, тем больше оно в конечном итоге нагревает окружающую среду.
Другие рефераты на тему «Физика и энергетика»:
- Влияние температуры на параметры сенсибилизированной фосфоресценции трифенилена в твердых растворах Н-декана
- Линейные электрические цепи постоянного и синусоидального тока
- Линия электропередачи напряжением 500 кВ
- К механизму электропроводности магнитной жидкости с графитовым наполнителем
- Экспериментальное подтверждение двойственности свойств магнитного поля
Поиск рефератов
Последние рефераты раздела
- Автоматизированные поверочные установки для расходомеров и счетчиков жидкостей
- Энергосберегающая технология применения уранина в котельных
- Проливная установка заводской метрологической лаборатории
- Источники радиации
- Исследование особенностей граничного трения ротационным вискозиметром
- Исследование вольт-фарадных характеристик многослойных структур на кремниевой подложке
- Емкость резкого p-n перехода