Фотоэлектронная эмиссия. Эффективные фотокатоды

Практически для фотоэлементов больший интерес представляет полный фототок, возникающий при освещении сплошным спектром, даваемым раскаленным телом, например, спиралью лампы накаливания. Характеристика фотокатода в этом случае называется интегральной чувствительностью (размерность в микроамперах на люмьен (мкл.лм -1)).Интегральная чувствительность, очевидно, определяется спектральной характерис

тикой фотокатода и спектральным составом излучения. Обычно интегральная чувствительность фотокатода определяется при использовании стандартного источника облучения. Таким источником является вольфрамовая нить накала лампы при температуре ее, равной 2770К (яркостная температура при этом равна 2848К ).

Рассмотрим кратко основы экспериментальной техники фотоэлектрических измерений. Для определения зависимостей требуется получение монохроматических потоков излучение различных длин волн и измерение их интенсивности. Тип источника излучения зависит от исследуемой спектральной области. В видимой части спектра (1.5 эв3, 1эв) обычно пользуются лампами накаливания, дающий непрерывный спектр. В области ближнего ультрафиолета () ;

(3, 1эв5, 63 ) широкое распространение имеет ртутная кварцевая лампа, излучающая линейчатый спектр, содержащий большое количество спектральных линий. В области вакуумного ультрафиолета (6, 2эв12, 3эв), как правило, используется искровой разряд.(это область спектра получило свое название в связи с тем, что излучение этих волн сильно поглощается в воздухе. Поэтому работать с этими излучениями этих длин волн можно лишь в аппаратуре, в которой давление воздуха меньше 10 -4-10 -5тор.). Монохроматизация излучение длин волн, больших 1200, может быть осуществлена с помощью призменных спектрографов. При этом в качестве оптических материалов в видимой части спектра используется обычно стекло, в области ближайшего ультрафиолета докварц. Могут применятся и другие материалы, например, кристаллы NaCl.В интервале длин волн используются кристаллы LiF. Излучение с более короткими длинами волн поглощается любыми известными оптическими материалами. Поэтому проведение исследований в коротковолновой области вакуумного ультрафиолета требует использования спектрографов с отражающими диспергирующими системами, например, с вогнутой дифракционной решеткой. Измерение интенсивностей потоков излучения обычно осуществляется с помощью специально калиброванных термопар, термостолбиков и фотоумножителей. В ряде случаев абсолютные значения фототоков при использующихся интенсивностях излучения малы и их измерение требует применения высокочувствительных измерителей тока. В ряде случаев абсолютные значения фототоков при данных интенсивностях излучения малы и их измерение требует применения высокочувствительных измерителей тока. Рассмотрим результаты экспериментальных исследований спектральных характеристик фотокатодов из массивных металлов. Для щелочных, а также некоторых щелочноземельных металлов красная граница лежит в видимой части спектра ; для подавляющего же большинства металлов она находиться в ультрафиолетовой области. Более детальные исследования фотоэффекта с различных металлов показали, однако, что при T >0 резкой красной границы не существует. В действительности фототок в области , близких к , асимптотически приближается к нулю и определение из экспериментальной зависимости , строго говоря, выполнено быть не может. Лишь специальная математическая обработка экспериментальных данных позволяет найти. Отсутствие резкой красной границы при Т > 0 легко понять, если учесть распределение по энергиям электронов внутри твердого тела. Пренебрежение величиной, .сделанное выше, является точным лишь при Т=0.При Т > 0 величина может быть больше нуля. Это приведет, во-первых, к фотоэффекту электронов с уровней энергии E > –, который может происходить и при, а во-вторых, к наличию в фотоэмиссии электронов с кинетическими энергиями, большими, чем.. Однако число электронов в металле с энергиями мало. Поэтому и вероятность фотоэлектрического поглощения при мала, и фототок также мал. При для всех металлов их квантовый выход возрастает при увеличении ; около красной границы рост фототока определяется зависимостью

iф

Качественно указанное возрастание Y с hлегко объяснить из следующих простых соображений. При h >h интервал энергий электронов в металле, которые могут быть возбуждены светом до энергий , достаточных для вылета из фотокатода, тем шире, чем больше , если, однако, при этом< E1, где E1— уровень дна зоны проводимости в металле. Поэтому при увеличении частоты света вероятность поглощения, сопровождающегося переходами электронов на уровни , при том же общем числе поглощенных фотонов увеличится, а следовательно и сила фототока, как правило, будет возрастать. Кроме того, поглощение с данной начальной энергией E фотона большей энергии обусловливает немалую вероятность выхода такого электрона из более глубоких слоев фотокатода. Интервал частот излучений, с которыми проводились исследования, прилегающий к , как правило, невелик и составляет примерно 0, 5. В большей спектральной области вблизи красной границы исследованы щелочные и отчасти щелочноземельные металлы (Ba), для которых .Для них, в отличие от остальных металлов, спектральные характеристики в этой области энергий фотонов имеют максимум. Примеры эксперемтально полученных спектральных характеристик вблизи красной границы для ряда металлов показаны на рис.(слева). Данные, полученные в разных экспериментах, а иногда даже и в одной и той же работе, не всегда хорошо согласуются между собой (рис. результаты для Be). Это объясняется тем, что квантовый выход металлический эмиттеров вблизи красной границы очень чувствителен к чистоте поверхности и изменяется в десятки и даже сотни раз в процессе очистки и обезгаживания эмиттера. Абсолютные значения квантового выхода для чистых металлов в рассматриваемом интервале имеют порядок 10 -5—10 -3 элвл и, очевидно, зависят от , для эв элкв.Спектральную характеристику с монотонным ростом U при увеличении принято называть нормальной характеристикой, а фотоэффект в этом случае -нормальным. Если же спектральная характеристика имеет максимум, фотоэффект обычно называют селективным.

Страница:  1  2  3  4  5  6  7  8 


Другие рефераты на тему «Физика и энергетика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы