Фотоэлектронная эмиссия. Эффективные фотокатоды

Если между электродами приложено напряжение, то электрическое поле радиально и оно изменяет только компонента а остается такой же, как при отсутствии поля. Значит, в точке прибытия электрона энергия, связанная с составляющей , равна

, (6)

где К­—полная энергия электрона. Формула дает часть полной энергии, которая не измеряется

в методе тормозящего поля между сферическими электродами. Если , то и, подавно, , и измеряемая часть энергии равна

, (7)

т.е. при можно с большой степенью точности измерять распределения полных энергий электронов. Неизменяемая часть энергии будет наибольшей для электронов, начальная скорость которых направлена по касательной к поверхности эмиттера. Для всех других электронов ошибка будет еще меньше. Формула (7) остается верной и для системы, в которой внутренняя сфера заменена несферическим катодом достаточно малого размера. рис. показаны результаты измерения вольт-амперной характеристик для меди при трех длинах волн. Из спектрально разложенного потока излучения выделяются монохроматический пучок лучей, который направляется на внутреннюю сферу. Ток (очень слабый) измеряется гальванометром. Форму измеренных вольт-амперных характеристик истолковать нетрудно. Горизонтальный участок - это ток насыщения, текущий в ускоряющем поле. На рис.4 масштаб выбран так, что ордината, изображающая ток насыщения для всех длин волн одинакова. В точке, где начинается понижение кривых, происходит переход от ускоряющего поля к тормозящему, и в этой точке напряжение батареи компенсирует контактную разность потенциалов и истинное напряжение

.

Для точек пересечения характеристик с осью абсцисс выполняется соотношение

зап Фэм

где Uзап - величина запирающего напряжения и Фэм- работа выхода эмиттера. Таким образом, на основании закона Эйнштейна задерживающий потенциал, при котором ток прекращается, линейно зависит от частоты , причем по углу наклона прямой можно определитьh (если е считать известным ). На рис.3 показаны прямые для Alи Cu,

Рис 3

причем для H получается 6, 61·эрг. сек, т.е. превосходное подтверждение закона Эйнштейна.

Рис 4. Вольт-амперная характеристика для Cu

Этот опыт доказывает также, что энергия фотона в металле может переходить к одному из свободных электронов. В этом состоит особенность фотоэлектрического поглощения света в металлах. Положение начало вольт-амперной характеристики, т.е. точка ее пересечения с осью абсцисс ---, не зависит от работы выхода металла-эмиттера. Если обозначить напряжение батареи, при котором через Uзб, то

зап)ист=uзб+uкн=Фэм,

uкн=(Фа-Фэм),

то

uзб=Фа),

т.е. при заданной частоте и одном и том же металле коллектора-анода вольт-амперные характеристики для различных металлических эмиттеров начинаются из одной и той же точки на оси абсцисс.

Вольт-амперная характеристика на участке тормозящего поля представляет собой интегральную кривую распределения электронов по энергиям. В самом деле, абсциссы этой кривой в некотором масштабе равны энергии электрона, а анодный ток, отложенный по оси ординат:

Ia=e,

где dNW -число электронов с энергиями в интервале от W до W+dW.Анодный ток Ia, таким образом, пропорционален числу электронов, энергии которых превращают величинуW1=eUa. Кривая, выражающая связь между энергией W1 и числом частиц, имеющих энергию, превышающую W1, называется интегральной кривой распределения, Чтобы получить обычную кривую распределения, нужно продифференцировать графически интегральную кривую распределения. Это сделано на рис.5

рис 5.

для интегральной кривой, измеренной при Как видно, максимальные энергии фотоэлектронов для металла, даже при освещении ультрафиолетовым светом, только немного превышают 1эв, а наиболее вероятная энергия (максимум кривой), грубо говоря, вдвое меньше.

Фотографические свойства эмиттеров принято характеризовать несколькими величинами. Величина называется чувствительностью катода. В этой формуле j-падающий на фотокатод поток лучистой энергии определенной длины волны, а — фототок, вызванный этим потоком. Умножая числитель и знаменатель на время t, получим в числителе количество электричества, унесенное фототоком за время t, а в знаменателе —энергию, упавшую за то же время на фотокатод. Обычно чувствительность измеряют в кулонах на калорию (к.кал -1). Чувствительность фотокатода можно также выразить в виде отношения числа электронов nе испускаемых фотокатодом, к числу фотонов n р, упавших на его поверхность за то же время. Величину n en р называют квантовым выходом Y, т.е.

В этом случае размерность - электрон на квант (эл/кв). Если часть энергии излучения, упавший на фотокатод, отражается от него или проходит насквозь, то для оценки эффективности фотокатода физически более целесообразно его чувствительность относить не к падающей, а к поглощенной энергии (или в случае квантового выхода, не к числу падающих, а поглощенных квантов энергии ). Чувствительность фотокатода и квантовый выход зависят от длины волны падающего излучения. Зависимости и или же называются спектральными характеристиками фотокатода.

Страница:  1  2  3  4  5  6  7  8 


Другие рефераты на тему «Физика и энергетика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы