Квантовый выход светочувствительных структур полупроводник-металл-диэлектрик
Накамура начал работу над созданием сине-зеленых светодиодов. Зная, что главной проблемой является получение подходящих материалов, а хорошим методом их выращивания — MOCVD (Metalorganic Chemical Vapor Deposition) — метод осаждения пленок из металлоорганических соединений.
Первый коммерческий синий светодиод был сделан Накамурой в начале 1994 года на основе гетероструктуры InGaN/AlGaN с акт
ивным слоем InGaN, легированным Zn.
Выходная мощность составляла 3 мВт при прямом токе 20 мА с квантовым выходом (отношением числа инжектированных электронов к числу образовавшихся фотонов) 5,4% на длине волны излучения 450 нм. Вскоре после этого за счет увеличения концентрации In в активном слое был изготовлен зеленый светодиод, излучавший с силой света 2 кд. Он состоит из 3-нанометрового активного слоя In0,2Ga0,8N, заключенного между слоями p-AlGaN и n-GaN, выращенными на сапфире. Такой тонкий слой InGaN сводит к минимуму влияния рассогласования решеток: упругое напряжение в слое может быть снято без образования дислокаций и качество кристалла остается высоким. Здесь слой InGaN образует одиночную квантовую яму, в которой локализованы электроны и дырки, поступающие из окружающего материала. Из-за пространственного ограничения движения носителей тока происходит эффективная излучательная рекомбинация. Скорость рекомбинации зависит от содержания In в активном слое и энергии квантованных состояний, которые, в свою очередь, зависят от толщины квантовой ямы и энергетического барьера между слоем InGaN и окружающим материалом, а изменение толщины дает возможность дополнительно управлять длиной волны излучения. В 1995 году при еще меньшей толщине слоя InGaN и более высоком содержании In удалось повысить силу света до 10 кд на длине волны 520 нм, а квантовую эффективность до 6,3%, причем время жизни светодиодов составляло 5х104ч (измеренное), а по теоретическим оценкам — более 106 ч (около 150 лет!).
Получение белого света с помощью светодиодов
На сегодняшний момент существует три способа получение белого света с помощью светодиодов: смешивание в определенной пропорции излучения красного, зеленого и синего светодиодов. При этом могут быть использованы как отдельные светодиоды разных цветов, так и 3-кристальные светодиоды, объединяющие кристаллы красного, синего и зеленого свечения в одном корпусе. На рис. 2 показано получение белого света путем смешивания в определенной пропорции излучения красного, зеленого и синего светодиодов.
Основой более дешевого и распространенного способа получения светодиода белого света является полупроводниковый кристалл структуры InGaN, излучающий на длине волны 460-470 нм (синий цвет) и нанесенный сверху на поверхность кристалла люминофор на основе YAG (иттрий-гадолиниевых гранатов, активизированный Се3+), излучающий в широком диапазоне видимого спектра и имеющий максимум в его желтой части спектра.
На рис. 3 показано получение белого света с помощью кристалла синего светодиода и нанесенного на него слоя желтого люминофора.
Человеческий глаз комбинацию такого рода воспринимает как белый цвет. Такие светодиоды намного дешевле 3-кристальных, обладают хорошей цветопередачей, а по светоотдаче (до 30 лм/Вт) они уже обогнали лампы накаливания (7-10 лм/Вт).
На рис. 4 показано строение 5-миллиметрового светодиода, излучающего белый свет.
Еще один метод получения белого света — возбуждение 3-слойного люминофора светодиодом ультрафиолетового спектра (УФ-СИД).
На рис. 5 показано получение белого света с помощью ультрафиолетового светодиода и RGB-люминофора.
У каждого способа есть свои достоинства и недостатки. Технология RGB в принципе позволяет не только получить белый цвет, но и перемещаться по цветовой диаграмме при изменении тока через разные светодиоды. Этим процессом можно управлять вручную или посредством программы, можно также получать различные цветовые температуры. Поэтому RGB-матрицы широко используются в светодинамических системах. Кроме того, большое количество светодиодов в матрице обеспечивает высокий суммарный световой поток и большую осевую силу света. Но световое пятно из-за аберраций оптической системы имеет неодинаковый цвет в центре и по краям, а главное, из-за неравномерного отвода тепла с краев матрицы и из ее середины светодиоды нагреваются по-разному, и, соответственно, по-разному изменяется их цвет в процессе старения — суммарные цветовая температура и цвет «плывут» за время эксплуатации. Это неприятное явление достаточно сложно и дорого скомпенсировать.
Белые светодиоды с люминофорами существенно дешевле, чем светодиодные RGB-матрицы (в пересчете на единицу светового потока), и позволяют получить хороший белый цвет. И для них в принципе не проблема попасть в точку с координатами (0,33; 0,33) на цветовой диаграмме МКО. Недостатки же таковы: во-первых, у них меньше, чем у RGB-матриц, светоотдача из-за преобразования света в слое люминофора; во-вторых, достаточно трудно точно проконтролировать равномерность нанесения люминофора в технологическом процессе и, следовательно, цветовую температуру; и, наконец, в-третьих — люминофор тоже стареет, причем быстрее, чем сам светодиод.
Промышленность на данный момент выпускает как светодиоды с люминофором, так и RGB-матрицы — у них разные области применения.
Как уже упоминалось, строение светодиода не ограничивается стандартным 5-мм корпусом и определяется мощностью излучения и прямым током, проходящим через диод. Световой поток, излучаемый светодиодом, напрямую зависит от прямого тока, протекающего через светодиод. Чем больше ток, тем ярче светит светодиод. Это связано с тем, что чем больше ток, тем больше электронов и дырок поступают в зону рекомбинации в единицу времени. Но ток нельзя увеличивать до бесконечности. Из-за внутреннего сопротивления полупроводника и p-n-перехо-да диод перегреется и выйдет из строя.
Заключение
В данной курсовой работе рассмотрен способ определения к.п.д. светочувствительных систем полупроводник-металл. Особенность предлагаемого способа состоит в регистрации изменения сопротивления металлического слоя системы полупроводник-диэлектрик под действием падающего излучения.
Одной из важных характеристик фотохимической реакции является К.П.Д. (квантовый выход). Он характеризует соотношение числа прореагировавших и поглотивших свет молекул (атомов).
Предлагаемый способ определения к.п.д. светочувствительных систем полупроводник-металл может найти практическое применение в фотолитографии, оптотехнике систем полупроводник-металл, при определении к.п.д. фотокатодов.
Список использованной литературы
1) Костышин М.Т., Михайловская Е.В., Романенко П.Ф. Об эффекте фотографической чувствительности тонких полупроводниковых слоев, находящихся на металлических подложках.- ФТТ, 1966, 8, 4, 571-572.
Другие рефераты на тему «Физика и энергетика»:
Поиск рефератов
Последние рефераты раздела
- Автоматизированные поверочные установки для расходомеров и счетчиков жидкостей
- Энергосберегающая технология применения уранина в котельных
- Проливная установка заводской метрологической лаборатории
- Источники радиации
- Исследование особенностей граничного трения ротационным вискозиметром
- Исследование вольт-фарадных характеристик многослойных структур на кремниевой подложке
- Емкость резкого p-n перехода