Емкость резкого p-n перехода

p=pS.

В соответствии с законом Больцмана преодолеть потенциальный ба

рьер qVсможет только nexp (-qV/kT) электронов и p exp (-qV/kT) дырок. Поэтому потоки основных носителей, проходящие через p–n-переход, равны

n=n exp (-qV/kT), (2.4)

p=p exp (-qV/kT), (2.5)

На первых порах после мысленного приведения n- и p-областей в контакт потоки основных носителей значительно превосходят потоки неосновных носителей: n>>n, p>>p. Но по мере роста объемного заряда увеличивается потенциальный барьер p–n-перехода qV и потоки основных носителей согласно (2.4) и (2.5) резко уменьшаются. В то же время потоки неосновных носителей, не зависящие от qV[ см. (2.2) и (2.3)] остаются неизменными. Поэтому относительно быстро потенциальный барьер достигает такой высоты j= qV, при которой потоки основных носителей сравниваются с потоками неосновных носителей:

n=n, (2.6)

p=p. (2.7)

Это соответствует установлению в p–n-переходе состояния динамического равновесия.

Подставляя в (2.6) nиз (2.4) и n из (2.2), а в (2.7) p из (2.5) и p из (2.3), получаем

nexp (-qV/kT)= n, (2.8)

pexp (-qV/kT)= p. (2.9)

Отсюда легко определить равновесный потенциальный барьер p–n-перехода j= qV. Из (2.8) находим

j= qV= kTln (n/ n)= kTln (n p/n). (2.10)

Из (2.9) получаем

j= kTln (p/ p)=kTln (pn/ n). (2.11)

Из (2.10) и (2.11) следует, что выравнивание встречных потоков электронов и дырок происходит при одной и той же высоте потенциального барьера j. Этот барьер тем выше, чем больше различие в концентрации носителей одного знака в n- и p-областях полупроводника.

Рассчитаем контактную разность потенциалов при 300 К.

n=N=1,010

p=N=1,010

j= kTln(pn/n)=1,3810300ln=

= 414106,26=2,610(Дж)

Страница:  1  2  3  4  5  6  7 


Другие рефераты на тему «Физика и энергетика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2025 - www.refsru.com - рефераты, курсовые и дипломные работы