Искусство определения понятий

Для выделения существенных признаков необходимо абстрагироваться (отвлечься) от несущественных, которых в любом предмете очень много. Этому помогает сравнение, сопоставление предметов. Для выделения ряда признаков требуется произвести анализ, т.е. мысленно расчленить целый предмет на его составные части, элементы, стороны, отдельные признаки. Обратная операция — синтез (мысленное объединение) ч

астей предмета, отдельных признаков, притом признаков существенных, в единое целое. Мысленному анализу как приему, используемому при образовании понятий часто предшествует анализ практический, т.е. Разложение предмета на его составные части. Мысленному синтезу предшествует практический сбор частей предмета в единое целое с учетом правильного взаимного расположения частей при сборке.

Анализ — мысленное расчленение предметов на их составные части, мысленное выделение в них признаков.

Синтез — мысленное соединение в единое целое частей предмета или его признаков, полученных в процессе анализа.

Сравнение — мысленное установление сходства или различия предметов по существенным или несущественным признакам.

Абстрагирование — мысленное выделение одних признаков предмета и отвлечение от других. Часто задача состоит в выделении существенных признаков и в отвлечении от несущественных, второстепенных.

Обобщение — мысленное объединение однородных предметов в некоторый класс.

Перечисленные выше логические приемы используются при формировании понятий как в научной деятельности, так и при овладении знаниями в процессе обучения (в школе, вузе и других учебных заведениях).

1.2 Содержание и объем понятия

Всякое понятие имеет содержание и объем. Содержанием понятия называется совокупность существенных признаков одноэлементного класса или класса однородных предметов, отраженных в этом понятии. Содержанием понятия "квадрат" является совокупность двух существенных признаков: "быть прямоугольником" и "иметь равные стороны",

Объемом понятия называют совокупность (класс) предметов, которая мыслится в понятии. Объективно, т.е. вне сознания человека, существуют различные предметы, например, школьники. Под объемом понятия "школьник" подразумевается множество всех школьников, которые существуют сейчас, существовали ранее и будут существовать в будущем. Класс (или множество) состоит из отдельных объектов, которые называются его элементами. В зависимости от их числа множества делятся на конечные и бесконечные. Например, множество столиц государств конечно, а множество натуральных чисел бесконечно. Множество (класс) А называется подмножеством (подклассом) множества (класса) В, если каждый элемент А является элементом В. Такое отношение между подмножеством А и множеством В называется отношением включения класса А в класс В и записывается так: А с В. Читается: класс А входит в класс В. Это отношение вида и рода (например, класс "стол" входит в класс "мебель").

Отношение принадлежности члемента а классу А записывается так: а Є А. Читается: элемент а принадлежит классу А. Например, а — "нева" и А - "река". Классы А и В являются тождественными (совпадающими), если А с В и В с А, что записывается как А= В.

Закон обратного отношения между объемами и содержаниями понятий

В этом законе речь идет о понятиях, находящихся в родовидовых отношениях. Объем одного понятия может входить в объем другого понятия и составлять при этом лишь его часть. Например, объем понятия "хищная рыба" целиком входит в объем другого, более широкого по объему понятия "рыба" (составляет часть объема понятия "рыба"). При этом содержание первого понятия оказывается шире, богаче (содержит больше признаков), чем содержание второго. На основе обобщения такого рода примеров можно сформулировать следующий закон: чем шире объем понятии, тем уже его содержание, и наоборот. Этот закон называется законом обратного отношения между объемами и содержаниями понятии. Он указывает на то, что чем меньше информации о предметах, заключенной в понятии, тем шире класс предметов и неопределеннее его состав (например, "водопад"), и, наоборот, чем больше информации в понятии (например, "крупный водопад" или "крупный водопад в Канаде"), тем уже и определеннее круг его предметов, или даже мыслится только один предмет.

2. Отношения между понятиями

Предметы мира находятся друг с другом во взаимосвязи и взаимообусловленности. Поэтому и понятия, отражающие эти предметы, также находятся в определенных отношениях. Далекие друг от друга по своему содержанию понятия, не имеющие общих признаков, называются несравнимыми (например, "поэма" и "колодец"; "невоспитанность" и "радуга"), остальные понятия называются сравнимыми.

Сравнимые понятия делятся по объему на совместимые (объемы этих понятий совпадают полностью или частично) и несовместимые (их объемы не имеют общих элементов).

В отношении противоположности (контрарности) находятся объемы таких двух понятий, которые являются видами одного и того же рода, и притом одно из них содержит какие-то признаки, а другое эти признаки не только отрицает, но и заменяет их другими, исключающими (т.е. противоположными признаками). Слова, выражающие противоположные понятия, являются антонимами. Антонимы широко используются в обучении. Примеры противоположных понятий: "великан" — "карлик"; "белые туфли" -"черные туфли". Объемы последних двух понятий разделены объемом некоторого третьего понятия, куда, например, входит понятие "коричневые туфли".

В отношении противоречия (контрадикторности) находятся такие два понятия, которые являются видами одного и того же рода, и при этом одно понятие указывает на некоторые признаки, а другое эти признаки отрицает. Исключает, не заменяя их никакими другими признаками. Если одно понятие обозначить А (например, "глубокое озеро"), то другое понятие, находящееся с ним в отношении противоречия, следует обозначить не-А (т.е. "неглубокое озеро"). Круг Эйлера, выражающий объем таких понятий, делится на две части (А и не-А), и между ними не существует третьего понятия. Например, товар может быть либо дорогой, либо недорогой; комната бывает светлой или несветлой; животное - позвоночным или беспозвоночным и т.д. Понятие А является положительным, а понятие не-А — отрицательным. Понятия А и не-А также являются антонимами.

3. Определение понятий

Определение (дефиниция) (от лат. (definitio — определение) понятия — логическая операция раскрытия содержания понятия или значения термина.

С помощью определения понятий мы в явной форме раскрываем содержание понятия и тем самым отличаем круг определяемых предметов от других предметов.

Примеры: "Информатика — наука, предметом которой являются процессы и системы получения, хранения, передачи, распространения, использования и преобразования информации" (1); "Правильной дробью называется простая дробь, числитель которой меньше знаменателя" (2).

Страница:  1  2  3  4  5  6  7 


Другие рефераты на тему «Философия»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2025 - www.refsru.com - рефераты, курсовые и дипломные работы