Жидкокристаллические соединения

В структуре смектика А молекулы расположены в мономолекулярных слоях так, что их длинные оси перпендикулярны плоскости слоев (рис. 7, а). Неструктурированные смектические ЖК второго типа обладают симметрией C2v и являются оптически двуосными. Наиболее распространенный смектический жидкий кристалл этого типа – смектик С, имеющий мономолекулярные слои, молекулы в слоях расположены наклонно (рис.

7, б).[2]

Рис. 7. Схематическое изображение расположения молекул в смектике А (а), в смектике С (б).

4.2 Нематический тип ЖК

Нематический тип ЖК (нематики от греч. "нема" — нить) характеризуется наличием только одномерного ориентационного порядка длинных (каламитики) или коротких (дискотики) осей молекул (рис. 4, б и г соответственно). При этом центры тяжести молекул расположены в пространстве хаотично, что свидетельствует об отсутствии трансляционного порядка.[5]

Для такого кристалла характерны две особенности:

o Наличие дальнего ориентационного порядка (строгая параллельность длинных осей молекул);

o Отсутствие дальней корреляции между положением центров масс молекул – нематик является жидкостью.

Направление главной оси n (директора) кристалла в пространстве произвольно. Единственное структурное ограничение в обычном нематическом ЖК – это параллельное или почти параллельное расположение длинных осей молекул. Молекулы могут двигаться во всех трех направлениях и вращаться вокруг своей оси.

Толстые пленки нематических ЖК мутны. В пленках толще 0,1 мм, помещенных между скрещенными николями, видны нитевидные дисклинации. В более тонких пленках можно получить шлирен-текстуру с точечными особенностями (сингулярностями) (рис. 8). Эти особенности соответствуют нитям, расположенным перпендикулярно пленке и характеризующимся определенным числом темных полос, выявляемых при наблюдении между скрещенными николями. Обычно обнаруживают точки с двумя или четырьмя полосами. При одновременном вращений николей, полосы вращаются либо в том же, либо в противоположном направлениях; в соответствии с этим различают положительные и отрицательные точки.

Рис. 8. Нематическая шлирен-текстура. Скрещенные николи, Х120. Видны 2 и 4 темные полосы, исходящие из одной точки.

Ориентировать молекулы в пленках жидкого нематика можно, воздействуя на них специально обработанными поверхностями. Если поверхность натирать в одном направлении, молекулы расположатся своими длинными осями вдоль этого направления. При другом способе обработки – с помощью некоторых поверхностно-активных веществ – длинные оси молекул могут ориентироваться либо перпендикулярно, либо параллельно поверхности. Если длинные оси ориентированы в основном перпендикулярно, то образуется псевдоизотропная текстура. При наблюдении между скрещенными николями она кажется темной. Если коснуться покровного стекла, возникают вспышки света; это указывает на нарушение перпендикулярной ориентации.

В термотропных жидких кристаллах нематическая мезофаза – самая высокотемпературная. При нагревании она переходит в изотропную жидкость. Этот переход – первого рода; энтальпия перехода составляет 0,1 – 1,0 ккал∙моль-1. Энергия, необходимая для деформации ЖК, настолько мала, что даже слабые возмущения, вызываемые частицами пыли или неоднородностями поверхности стекла, на котором покоится жидкий кристалл, могут существенно исказить структуру.[2]

Нематические ЖК обладают осью симметрии бесконечного порядка и поэтому являются одноосными. Молекулы в нематическом ЖК ориентированы (вдоль выделенного направления) не полностью; степень ориентации можно количественно описать с помощью одного параметра порядка, S,

(1)

где θ – угол между длинной осью молекулы и осью симметрии нематика. Экспериментальные значения параметра S лежат в интервале от 0,4 (вблизи точки перехода нематика в изотропную жидкость) до 0,8 (вблизи точки кристаллизации нематика, если не образуется смектическая фаза).[6]

4.3 Холестерический тип ЖК

Наиболее сложный тип упорядочения молекул ЖК холестерический (холестерики), образуемый хиральными (оптически активными) молекулами, содержащими асимметрический атом углерода. Это означает, что такие молекулы являются зеркально-несимметричными в отличие от зеркально-симметричных молекул нематиков. Впервые холестерическая мезофаза наблюдалась для производных холестерина, откуда и произошло ее название. Холестерики во многих отношениях подобны нематикам, в которых реализуется одномерный ориентационный порядок; они образуются также при добавлении небольших количеств хиральных соединений (1-2 мол. %) к нематикам. Как видно из (рис. 4, в), в этом случае дополнительно реализуется спиральная закрученность молекул, и очень часто холестерик называют закрученным нематиком.[4]

Отсутствие дальнего трансляционного порядка обусловливает текучесть холестерика. Локально структуры нематика и холестерика очень похожи, однако на больших расстояниях ориентация директора n в холестерике оказывается винтовой. Когда шаг винта совпадает с длинной волны падающего света, возникает сильное брэгговское отражение; если при этом длина волны лежит в видимой области, холестерический ЖК кажется ярко окрашенным. Если этот шаг бесконечен, кристалл является обычным нематиком, если он равен нулю, система обладает цилиндрической симметрией.[3]

Шаг винтовой молекулярной упаковки в таком закрученном ЖК чувствителен к температуре. При освещении монохроматическим светом наиболее чувствительных холестериков заметное глазом изменение интенсивности отраженного света происходит при изменении температуры всего на 0,001°С. Для приложений, в которых не требуется столь высокая чувствительность, можно использовать естественный свет – видимые изменения происходят при изменении температуры на 0,01°С.

Холестерический ЖК ведет себя при освещении его видимым светом как дифракционная решетка. В этом отношении его можно уподобить обычному кристаллу (например, кристаллу NaCl), на котором происходит дифракция рентгеновых лучей.[2]

При фиксированном угле отражения условия интерференции выполняются только для лучей одного цвета, и слой (или пленка) холестерика кажется окрашенным в один цвет. Этот цвет определяется шагом спирали Р, который при нормальном угле падения света простым образом связан с максимумом длины волны отраженного света lmax:

P = lmax / n, (2)

где n — показатель преломления холестерика. Этот эффект избирательного отражения пленкой холестерика света с определенной длиной волны получил название селективного отражения. В зависимости от величины шага спирали, который определяется химической природой холестерика, максимум длины волны отраженного света может располагаться в видимой, а также в ИК- и УФ-областях спектра, определяя широкие области использования оптических свойств холестериков. У большинства холестериков с ростом температуры шаг спирали уменьшается, а следовательно, уменьшается и длина волны селективно отраженного света lmax (рис. 9).

Страница:  1  2  3  4  5  6 


Другие рефераты на тему «Химия»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2025 - www.refsru.com - рефераты, курсовые и дипломные работы