Химия цвета

Далеко не все органические вещества обладают цветом. Однако у тех веществ, которые имеют окраску, в структуре молекул есть принципиальное сходство. Все они, как пра­вило, большие молекулы, состоящие из десятков атомов. Для возникновения цвета имеют значение не электроны отдельных атомов, а состояние системы электронов, охватывающей всю молекулу целиком. Подвижность такой системы, ее способность

легко изменять свое состояние под небольшим воздействием световых квантов и обусловли­вает избирательное поглощение определенных волн из на­бора, составляющего видимый свет.

Чтобы понять зависимость цветности от строения, нуж­но рассмотреть, в чем состоят особенности энергетического состояния электронов того или иного типа молекул.

Спектры поглощения и цвет неорганических веществ

Тот или иной цвет вещества означает, что из всего интервала 400-700 нм длин волн пилимого света им погло­щаются какие-то определенные кванты, энергия которых в общем-то невелика.

Из этого в свою очередь следует, что в молекулах окра­шенных веществ энергетические уровни электронов довольно близко расположены друг к другу. Если разница ΔЕ велика, то употребляются другие кванты, несущие больше энергии, например, ультрафиолетовые. Такие ве­щества, как азот, водород, фтор, благородные газы, ка­жутся нам бесцветными. Кванты видимого света не погло­щаются ими, так как не могут привести электроны на бо­лее высокий возбужденный уровень. Если бы наши глаза способны были воспринимать ультрафиолетовые лучи, то в таком ультрафиолетовом свете и водород, и азот, и инерт­ные газы казались бы ним окрашенными.

Чем больше электронов в атоме, тем теснее друг к дру­гу электронные уровни. Особенно хорошо, если в атоме есть незанятые электронами орбиты. В таком случае для перехода электрона из одного состояния в другое требуют­ся кванты света уже с меньшей энергией, которую несут лучи видимой части спектра. Такие многоэлектронные га­логены, как хлор, бром, иод, уже окрашены. Имеют окрас­ку оксиды азота NО2, N2О3 и ковалентные соединения, на­пример CuCl2, AlI3. Окраска молекул (рис. 1.), состоящих из нескольких атомов, зависит от целого ряда факторов. Если действие этих факторов таково, что они сближают электронные уровни, то это способствует появлению или углублению окраски. Так более тесное взаимодействие атомов при переходе из газообразного в жидкое и далее твердое состояние может способствовать появлению или

углублению цвета, особенно в тех случаях, когда у атомов есть незанятые электронами орбиты.

Рис. 1. Окраска оксида азота (IV) исчезает при охлаждении (образуется димер N2O4) и вновь появляется при нагре­вании.

Различие в характере вза­имодействия сказывается на спектрах. Спектры поглощения простейших молекуляр­ных соединений — газов и веществ в газообразном состоянии — состоят из не­скольких серий узких полос (линий). Это значит, что из всего потока белого света они выбирают лишь некоторые фотоны, энергия которых как раз равна разнице между основным и "возбужденным" состояниями электро­нов. В жидком и особенно твердом состоянии спектр становится по существу сплошным, так как из-за сильного взаимодействия близко расположенных атомов появляется много новых энергетических уровней электро­нов и, следовательно, увеличиваются возможности новых электронных переходов, растет число уровней энергии мо­лекул и ионов. В спектр входит большое число широких полос, простирающихся на несколько десятков наномет­ров. Интенсивность полос и их различное наложение друг на друга определяет итоговый цвет вещества. Ведь при раз­личных сочетаниях основных цветов: красного, синего, зе­леного или красного, желто­го, синего получа­ются все другие цвета спек­тра.

Как правило, полосы по­глощения у неорганических веществ начинаются в види­мой области, а заканчиваются в ультрафиолетовой. Положение наиболее интенсивных по­лос поглощения и определяет цвет (табл. 1.).

Таблица 1.

Цвет вещества складывается из суммы отраженных волн (или прошедших вещество без задержки), причем интенсивность тех или иных волн может быть различна. Поэтому даже если спектр состоит из одних и тех же волн, но их относительная доля в спектре изменена, то мы видим вещества разного цвета. Лучи, комбинируясь в спектре друг с другом, дадут разную окраску. Вот пример. Кадмий и ртуть — элементы одной и той же подгруппы II группы периодичоской системы. Их атомы отличаются друг от друга числом внутренних электронов. Их сульфиды HgS и CdS сильно поглощают лучи фиолетовой части спектра и значительно слабее — красно-оранжевой (рис. 2.). В результате, казалось бы, незначительной разницы в отражении получается уже иная комбинация: суль­фид кадмия оказывается желтым, а сульфид ртути — оранжевым.

Рис.2. Разница в спектрах поглощения определяет цвет.

На диаграмме приведены спектры нескольких веществ, у которых различна интенсивность отражения волн разных участков видимого света. На рисунке 3 указано, при каких соотношениях мы видим тот или иной цвет. В том случае, если кривые пересекаются, цвета взаимно "уничтожают" друг друга и мы видим только тот цвет, который остается. При отражении цвета с длиной волны 480 нм вещество синее, так как взаимно уничтожились красный и зеленый цвета. При 500 нм — зеленое, выше 600 нм — красное с желтоватым оттенком. Цветовое ощущение от разных ок­расок (получаемое, например, при наложении цветных сте­кол) воспринимается нами как суммарное.

Рис. 3. Видимый цвет есть результат наложения основных цветов, соответствующих трем нервным центрам, создающих ощущение красного, зеленого и синего.

Особенности твердого состояния неорганических красителей

В первую очередь следует помнить, что неорганические красители, как природные, так и синтетические,— кристал­лические тела. Особенностью их является упорядоченное расположение многих сотен и тысяч атомов, ионов или мо­лекул. Различаются они как по типу входящих в твердое тело частиц, так и по типу химических связей между ними.

Для того чтобы понять их структуру, рассмотрим на зна­комых из школьного курса химии примерах особенности того или иного вида построения агрегатных состояний.

В газообразном состоянии вещества характеризуются значительными расстояниями между частицами и малыми силами взаимодействия между ними. Они способны зани­мать любой предоставленный объем, и их свойства в основ­ном определяются поведением отдельных частиц. В жид­ком же состоянии частицы веществ сближены на расстоя­ния, соизмеримые с их размерами, силы взаимодействия между частицами значительны. Частицы вещества объеди­няются в крупные агрегаты, в которых их взаимное расположение упорядоченное и движение носит колебательный характер (ближний порядок). На значительных расстоя­ниях от центров агрегатов (дальний порядок) эта упорядоченность нарушается. Прочность связей между агрегатами частиц в жидкости невелика, поэтому в жидком состоянии вещество занимает определенный объем, но способно изменять форму под действием силы тяжести. Поведение веществ в этом состоянии определяет­ся как свойствами частиц и их агрегатов, так и взаимодей­ствиями между ними.

Страница:  1  2  3  4  5  6  7  8  9 


Другие рефераты на тему «Химия»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы