Получение молибдена из отходов промышленности
Гидраты окислов с валентностью металла между VI и IV получены в виде соединений МоО(ОН)3 и Мо(ОН)5. сила этих электролитов очень слабая, они малорастворимы в воде.
МоО2 характерен гидрат состава Н2МоО3, который в свободном состоянии не выделен, выделен только в растворах, также получены его соединения сост
ава Ме2МоО3. слабый электролит.
Также при действии аммиака на растворы молибдатов получен Мо(ОН)3 - аморфный порошок черного цвета, не растворим в воде и растворах щелочей, легко растворяется в минеральных кислотах и при отсутствии окислителей дает ионы Мо+3.
Рассмотрим свойства Н2МоО4
Молибденовая кислота реагирует при повышенной температуре с оксидами, гидроксидами, карбонатами щелочных и щелочноземельных металлов давая соответствующие молибдаты.
Состояние молибденовой кислоты в растворах зависит от кислотности и разбавлености последних. При большом разбавлении (<10-4 моль/л, РН>6,5) молибденовая кислота находится в растворе в виде простых молекул. В более концентрированных растворах и при РН меньше шести: РН<6 происходит полимеризация молекул. Степень сложности образованных комплексов также зависит от температуры.
Рассмотрим свойства Мо(ОН)3
Сухой Мо(ОН)3 - это аморфный порошок, не растворимый в воде и растворах щелочей. Он проявляет основные свойства. Легко растворяется в растворах минеральных кислот, при этом образуются соли Мо3+.
2.6 Биологическая роль молибдена
Молибден – один из основных микроэлементов в питании человека и животных. Он содержится во многих живых тканях и необходим для поддержания активности некоторых ферментов, участвующих в катаболизме пуринов и серосодержащих аминокислот [1]. Активной биологической формой элемента является молибденовый кофермент (molybdenum cofactor, Moco) – низкомолекулярный комплекс небелковой природы, действующий в составе ферментов и необходимый для осуществления специфических каталитических превращений. Moco является коферментом четырех важных ферментов: ксантиндегидрогеназы, ксантиноксидазы, сульфитоксидазы и альдегидоксидазы. Ксантиндегидрогеназа катализирует превращение гипоксантина в ксантин, а затем в мочевую кислоту. Этот фермент, наряду с ксантиноксидазой, участвует в метаболизме пурина (образование NADH из NAD+). Сульфитоксидаза, находясь в митохондриях, участвует в метаболизме серосодержащих аминокислот – цистеина и метионина – и катализирует окисление сульфита в сульфат. Альдегидоксидаза принимает участие в реакциях катаболизма пиримидинов и биотрансформации ксенобиотиков – чужеродных для организма человека и животных веществ, порожденных в той или иной степени хозяйственной деятельностью человека и не входящих естественным образом в биотический круговорот. Именно со способностью альдегидоксидазы катализировать окисление в организме канцерогенных ксенобиотиков связывают предполагаемую антираковую активность молибдена.
ДНЕВНЫЕ НОРМЫ ПОТРЕБЛЕНИЯ МОЛИБДЕНА | |
Возраст, лет | (мкг/день) |
Младенцы, 0–0,5 | 15–30 |
0,5–1 . | 20–40 |
Дети, 1–3 . | 25–50 |
4–6 | 30–75 |
7–10 | 50–150 |
11–18 | 75–250 |
От 19 и старше | 75–250 |
Несмотря на то, что молибден является малораспространенным элементом, случаи его дефицита в организме человека редки.
В приведенной в тексте таблице указаны нормы потребления молибдена в зависимости от возраста человека, из данных таблицы можно сделать вывод, что в возрастанием возраста человека потребность в молибдена также возрастает. Недостаток молибдена вызывает тяжелые заболевания. Наиболее богатые элементом № 42 пищевые продукты: бобовые и злаковые растения, листовые овощи, молоко, фасоль, печень и почки.
2.7 Применение молибдена
Несколько столетий ученым в Европе не удавалось разгадать тайну остроты и прочности древних самурайских мечей и изготовить холодное оружие с подобными свойствами и только в 19 в. в мечах 14 в. была обнаружена примесь молибдена, обусловливающая их высокую прочность. Долгое время с момента открытия молибдена К. Шееле этот металл оставался лабораторной редкостью до того, как в конце 19 века был предложен промышленный способ извлечения молибденита. В 1891 французская фирма Schneider & Co впервые начала использовать молибден в качестве легирующей добавки, придающей стали одновременно высокую твердость и вязкость [20, 23]. Резкий скачок в объеме потребления молибдена произошел во время Первой мировой войны, так как темпы производства металлического вольфрама, использовавшегося в качестве легирующей добавки в производстве броневой стали, явно отставали от темпов его увеличивающегося потребления. К этому времени уже были известны замечательные свойства молибдена как легирующей добавки, но основные проблемы были связаны с нехваткой разведанных месторождений молибденита. Интересно, что 75-миллиметровая броня (сталь, легированная марганцем) появившихся на полях сражений в 1914 – 1918 годах танков англо-французских войск легко пробивалась 75-миллиметровыми снарядами немецкой артиллерии. Стоило только добавить молибден (в количестве всего 1,5–2%) к стали, как эти снаряды становились бессильны даже против 25-миллиметровых броневых листов.
Из всего количества молибдена, потребляемого промышленностью, до 80% используется в черной металлургии для производства жаропрочных, жаростойких антикоррозионных, инструментальных, быстрорежущих, магнитных, конструкционных сталей, жаропрочных и жаростойких чугунов. Молибден повышает прочность сталей на холоду и содействует ее сохранению при высокой температуре, повышает жаростойкость сталей и чугуна, улучшает способность принимать закалку, 1 вес. ч. Мо повышает прочность стали эквивалентно 2 - 2,5 вес. ч. вольфрама.
Другие рефераты на тему «Химия»:
- Экспрессный радиохимический анализ водных сред с применением сорбционного концентрирования
- Качественный анализ (кислотно-основная классификация)
- Карбоновые кислоты и их производные
- Получение медноаммиачного волокна (целлюлозы) химическим методом
- Получение алкилгалогенидов действием на спирты тионилхлорида