Методы исследования биологически активных соединений
общая для всех методов фильтрации проблема заключается в следующем. Нестационарные (т. е. изменяющиеся в пространстве и времени) данные не могут быть адекватно описаны средним. Структура данных, имеющих форму пика, при усреднении искажается.
Возможное решение проблемы состоит в таком выборе ширины диапазона (числа точек) для усреднения, чтобы сигнал усиливался, а шум подавлялся. Эта величин
а, называемая шириной фильтра, является одной из самых важных его характеристик. Слишком широкий фильтр подавляет структуру данных, слишком узкий — недостаточно эффективно устраняет шумы. Простейший тип цифрового фильтра называется оконным фильтром (или движущимся средним). Пример его использования приведен на рисунке (F 4). После фильтрации (F 4) структура данных выражена четче, а уровень шума ниже по сравнению с исходным спектром.
На врезке (F 4) показана конкретная форма цифрового фильтра, использованного в этом примере. В простейшем случае, когда усреднение проводится по п соседним точкам, каждая точка входит в общую сумму с коэффициентом 1/n. Например, при усреднении по 8 точкам каждая точка входит с коэффициентом 1/8.
Более сложным и более эффективным является способ фильтрации, основанный на методе наименьших квадратов. В пределах окна экспериментальные данные аппроксимируют каким-либо полиномом (например, квадратичной или кубической функцией). Широко распространен метод, который предложили Савицки и Голэй. Метод так и называется «Savizky-Golay smoothing» - сглаживание методом Савицки-Голэя В этом методе задается определенное число экспериментальных точек n (ширина окна), методом полиномиальной регрессии определяется сглаженное значение для каждой точки и окно передвигается дальше, проходя таким образом всю кривую. Эффективность фильтрации этим методом иллюстрирует рис. 4.
Мы начнем с изучения оптических методов. Это связано как с универсальностью этих методов, так и с тем, что оптические методы используются для детектирования в ряде других физико-химических методов, например, хроматографии.
Несомненно, наиболее простым и наиболее распространенным из оптических методов (в смысле его применения на практике) можно считать метод электронной спектроскопии. Этот метод часто называют либо УФ-спектроскопией, либо просто спектроскопией. Если химик говорит, что нужно снять спектр, определенно имеется в виду спектр в видимой или ультрафиолетовой (или в обеих) областях спектра, т.е. электронный спектр.
Видимый спектр. Спектроскопия как наука возникла после открытия Ньютона (около 1672 г.), показавшего, что величина преломления света при прохождении его через призму меняется в зависимости от цвета. Этот вывод был сделан после того, как было обнаружено, что изображения окрашенных тел при наблюдении их через призму в большей или меньшей мере смещаются в соответствии с различиями в окраске. Было установлено также, что изображение синего тела смещается больше, чем изображение красного.
В одном из последующих опытов Ньютон, используя в качестве источника света отверстие в оконной шторе, пропустил солнечный луч через стеклянную призму и таким образом получил спектр. Было известно и ранее, что сквозь призму можно наблюдать окрашенное изображение, но тогда предполагали, что эту окраску дает сама призма. Ньютон же на основании этого и других своих опытов сделал вывод, что белый свет является сложным, и в настоящее время известно, что семь первичных цветов — красный, оранжевый, желтый, зеленый, голубой, синий и фиолетовый — дают вместе белый свет.
Окраска раствора позволяет характеризовать испытуемый образец. Одновременно эта окраска характеризует и ту область спектра, в которой поглощает этот образец. Соответствующие данные приведены в следующих таблицах (F 5 и 6).
Последующими открытиями было установлено, что видимая иприлегающие к ней инфракрасная и ультрафиолетовая области спектра представляют лишь очень небольшие участки всего спектра излучения, известного теперь под названием электромагнитного спектра.
Уже давно установлено, что свет представляет собой электромагнитное излучение с длиной волны, изменяющейся в определенном интервале (Рис. F 7 и 8).
При попадании на тот или иной предмет свет может отражаться, поглощаться или рассеиваться (Рис. F 9). Обычно эти три явления протекают одновременно, но доля каждого из них различна в каждом конкретном случае.
Очень важно, что поглощение света веществом происходит избирательно, в зависимости от свойств вещества. На избирательном поглощении света основаны спектральные методы анализа. Эти методы применяются для установления строения соединений, их идентификации и количественного определения.
Приборы, применяемые для таких исследований, называются спектрофотометрами, и в них используется монохроматическое излучение, т.е. излучение с определенной длиной волны.
в спектральных исследованиях помимо длины волны обычно используются следующие ее функции (рис. F 10):
волновое число - число волн на сантиметр = 1/l см-1;
частота колебаний n (с-1) – число полных колебаний в секунду.
v = Скорость света (см/сек)/ Длина волны (см) = 3´1010 / l.
Все эти единицы связаны между собой:
|
|
|
|
Длина волны Скорость света
Единицы длины волны и частоты приведены в таблице (Рис. F 11).
ЗАКОНЫ ПОГЛОЩЕНИЯ СВЕТА
Количественные измерения поглощения света любой длины волны основаны на двух законах, установленных эмпирически в 18-м и 19-м веках, которые теперь связывают с именами Бугера, Ламберта и Бера. Так, в некоторых руководствах утверждается, что независимо Бугером в 1729 г. и Ламбертом в 1760 г. был сформулирован следующий закон: