Методика решения задач по теоретическим основам химической технологии
a, b, c, d – стехиометрические коэффициенты веществ.
В правой части уравнения (1.2.2) стоят концентрации взаимодействующих частиц, которые устанавливают при равновесии, - равновесные концентрации.
Уравнение (1.2.2) представляет собой математическое выражение закона действующих масс при химическом равновесии. Для реакции с участием газов к
онстанта равновесия выражается через парциальные давления, а не через их равновесные концентрации. В этом случае константу равновесия обозначают символом Кр.
Рi - равновесные парциальные давления i-того компонента.
Сi- равновесная молярная концентрация компонентов.
a, b, c, d – стехиометрические коэффициенты веществ.
Состояние химического равновесия при неименных внешних условиях теоретически может сохраняться бесконечно долго. В реальной действительности, т.е. при изменении температуры, давления или концентрации реагентов, равновесии может «сместиться» в ту или иную сторону протекания процесса.
Изменения, происходящие в системе в результате внешних воздействий, определяется принципом подвижного равновесия – принципом Ле Шателье – Брауна. При воздействие на равновесную систему, любого внешнего фактора, равновесие в системе смещается в таком направлении, чтобы уменьшить воздействие этого фактора.
1. Влияние давления на равновесие химической реакции (для реакции, проходящей в газовой фазе).
aA + bB cC + dD
- если реакция идет с увеличением количества компонентов a + b < c + d, то повышение давления смещает равновесие химической реакции справа налево.
- если реакция идет с уменьшением количества компонентов a + b > c + d, при увеличении давления сдвиг равновесия произойдет слева направо.
- если количество компонентов одинаково a + b = c + d, то изменение давления не повлияет на положении равновесия.
2. Влияние инертного газа. Введение инертного газа подобно эффекту уменьшения давления (Ar, N2, водяной пар). Инертный газ не участвует в реакции.
3. Влияние изменения концентрации реагирующих веществ. При введение дополнительного количества вещества равновесие химической реакции сместиться в ту сторону где концентрация вещества уменьшается.
4. Влияние температуры на химическое равновесие реакции.
Если к равновесной системе подводится теплота, то в системе происходят изменения, чтобы ослабить это воздействие, т.е. процессы с поглощением теплоты. При экзотермических реакциях снижение температуру сместит равновесие слева направо, а при эндотермических реакциях повышение температуры сместит равновесие справа налево.
Зависимость Кр от температуры – уравнение Вант – Гоффа.
; ;
(); lnkT1 – lnkT2 =
Примеры решения задач
1. Реакция соединения азота и водорода обратима и протекает по уравнению
N2 + 3Н2 2NН3. При состоянии равновесия концентрации участвующих в ней веществ были: [N2] = 0,01 моль/л, [Н2] = 2,0 моль/л, [NH3] = 0,40 моль/л. Вычислить константу равновесия и исходные концентрации азота и водорода.
Решение:
Для приведенной реакции
Подставляя значение равновесных концентраций, получим
= 2
Согласно уравнению реакции из 1 моль азота и 3 моль водорода получаем
2 моль аммиака, следовательно, на образование 0,4 моль аммиака пошло
0,2 моль азота и 0,6 моль водорода. Таким образом, исходные концентрации будут [N2] = 0,01 моль/л + 0,2 моль/л = 0,21 (моль/л),
[H2] = 2,0 моль/л + 0,6 моль/л = 2,6 (моль/л).
Ответ: Кравн = 2; С0 (N2) = 0,21 моль/л и С0 (Н2) = 2,6 моль/л.
2. Один моль смеси пропена с водородом, имеющей плотность по водороду 15, нагрели в замкнутом сосуде с платиновым катализатором при 320°С, при этом давление в сосуде уменьшилось на 25%. Рассчитайте выход реакции в процентах от теоретического. На сколько процентов уменьшится давление в сосуде, если для проведения эксперимента в тех же условиях использовать 1 моль смеси тех же газов, имеющей плотность по водороду 16?
Решение:
С3Н6 + Н2 С3Н8
1) Пусть ν(C3H6) = х, ν(H2) =1-x, тогда масса смеси равна
42х + 2(1 - х) = 2 • 15 = 30,
откуда х = 0,7 моль, т. е. ν(C3H6) = 0,7 моль, ν(H2) = 0,3 моль.
Давление уменьшилось на 25% при неизменных температуре и объеме за счет уменьшения на 25% числа молей в результате реакции. Пусть у моль Н2 вступило в реакцию, тогда после реакции осталось:
ν(C3H6) = 0,7 - у, ν(H2) = 0,3 – у, ν(C3H8) = у,
νо6щ = 0.75 =(0,7 - у) + (0,3 - у) + у, откуда y = 0,25 моль.
Теоретически могло образоваться 0,3 моль С3Н8 (H2 — в недостатке), поэтому выход равен . Константа равновесия при данных условиях равна
2) Пусть во втором случае ν(C3H6) = a моль, ν(H2) = (1 – а) моль, тогда масса смеси равна 42а + 2(1 - а) = 2 • 16 = 32, откуда, а= 0,75, т. е. ν(C3H6) = 0,75, ν(H2) = 0,25. Пусть в реакцию вступило b моль Н2. Это число можно найти из условия неизменности константы равновесия
=
Из двух корней данного квадратного уравнения выбираем корень, удовлетворяющий условию 0 < b < 0,25, т. е. b = 0,214 моль
Общее число молей после реакции равно
νoбщ =((0,75 - 0,214) + (0,25 - 0,214) + 0,214 - 0,786) моль, т. е. оно уменьшилось на 21,4% по сравнению с исходным количеством (1 моль). Давление пропорционально числу молей, поэтому оно также уменьшилось на 21,4%.
Ответ: выход С3Н8 — 83,3%; давление уменьшится на 21,4%.
Задачи для самостоятельного решения
1. В реакции между раскаленным железом и паром
3Fe(тв) + 4Н2О(г) Fe3O4(тв)+4Н2(г), при достижении равновесия парциальные давления водорода и пара равны 3,2 и 2,4 кПа соответственно. Рассчитайте константу равновесия.
2. Вычислите константы равновесия Кр КС газовой реакции
СО + Cl2 СОCl2, состав газовой смеси при равновесии был следующим (% по объему): СО=2,4, Cl2 =12,6, СОCl2 =85,0, а общее давление смеси при 20С составляло 1,033*105 Па. Вычислите ΔG реакции.