Коллоидные системы в организме и их функции

Лиофобные дисперсные системы (например, дисперсии иодида серебра, кремнезема и полистирольного латекса) образуются в результате механической или химической обработки. В этих системах, однако, всегда существует некоторое (часто значительное) сродство между поверхностью диспергированных частиц и дисперсионной средой (иначе поверхность частицы не смачивалась бы и дисперсия бы не образовалась), так

что частицы этих «лиофобных» дисперсий на самом деле имеют «лиофильные» поверхности. К «лиофильным» традиционно относят растворимые макромолекулы (хотя в них могут присутствовать «лиофобные» области, как в случае белков). Возможно, удобнее классифицировать коллоидные системы по термодинамическому принципу как обратимые и необратимые, в зависимости от того, могут или не могут они самопроизвольно образовываться при смешении их компонентов.

Лиофобные золи термодинамически неустойчивы и их частицы с течением времени склонны к агрегации и осаждению. Образование таких золей происходит в результате дробления вещества в объеме раствора либо при агрегации небольших молекул или ионов. Диспергирование объемных материалов посредством механического измельчения, ультразвуковой обработки и других подобных методов обычно не приводит к получению частиц меньшего размера, чем верхний предел области коллоидных частиц. Более высокая степень диспергирования часто достигается применением метода агрегации, связанного с образованием молекулярно диспергированного пересыщенного раствора, из которого дисперсная фаза «осаждается» в нужной форме. Для этой цели могут быть использованы комбинированные методы, такие, как замена хорошего растворителя на менее хороший, охлаждение и различные химические реакции. Примеры химических реакций, с помощью которых получаются гидрозоли в соответствующих условиях эксперимента: кипячение раствора хлорида железа(III), в результате чего получаются частицы оксида железа(III) малого размера; реакция между разбавленными растворами тиосульфата натрия и соляной кислоты с образованием дисперсной серы; реакция между разбавленными растворами нитрата серебра и иодида калия с образованием малых частиц иодида серебра. Полимерные латексы можно получать методом эмульсионной полимеризации.

Образование новой фазы в процессе «осаждения» включает образование зародышей (центров кристаллизации) и рост новой фазы; соотношение скоростей этих процессов и определяет размер частиц. Высокая степень дисперсности получается, если скорость зародышеобразования велика, а скорость роста частицы мала. Ингибиторы роста могут применяться не только для получения частиц малого размера, но также для селективного действия на рост отдельных граней кристалла, т.е. для изменения формы частицы. Это важно для приготовления катализаторов гетерогенного катализа, так как кристаллографическая ориентация граней влияет на эффективность катализатора. Если осаждаемый порошок обладает умеренной растворимостью, то состав дисперсной фазы меняется во времени (наблюдается явление старения), когда менее растворимые частицы большего размера растут за счет малых (но более растворимых) частиц.

Большинство препаративных методов приводит к образованию полидисперсных золей (в которых частицы имеют распределение по размерам). Можно приготовить (например, с помощью методов зародышеобразования при условиях, которые приводят к спонтанной кристаллизации) почти монодисперсные золи, в которых размеры частиц примерно равны. Эти золи очень полезны в качестве калибровочных стандартов, а также в экспериментах для проверки новых гипотез. Они имеют и специальные применения в множительной технике, при получении антиотражательных покрытий линз и т.д.

Вероятно, наиболее важным физическим свойством коллоидных дисперсных систем является тенденция частиц к агрегации. Коагуляция – это сильная агрегация, флокуляция – слабая, легко обратимая. Пептизация –процесс, в котором дисперсия восстанавливается (при слабом перемешивании или без него) при изменении состава дисперсионной среды, например при добавлении разбавленного раствора электролита.

Устойчивость коллоидных систем – сложный вопрос. В простейшем случае она определяется балансом сил между вандерваальсовым притяжением и кулоновским отталкиванием частиц двойных слоев. (Эффекты ПАВ и полимерных добавок рассмотрены ниже.)

Вандерваальсовы силы обычно проявляются как силы межмолекулярного притяжения, которые обусловливают переход газов в жидкое состояние. Энергия вандерваальсова взаимодействия двух атомов чрезвычайно мала и быстро уменьшается с увеличением расстояния между ними (примерно обратно пропорционально шестой степени расстояния). Если силы притяжения между всеми атомными парами в двух коллоидных частицах суммируются, значительно возрастает не только общее взаимодействие, но и дальнодействующие кулоновские силы отталкивания (обратно пропорционально, в степени 1–2, расстоянию между частицами).

Коллоидные частицы, диспергированные в полярной жидкости, такой, как вода, обычно несут чистые (несвязанные) заряды на своей поверхности. Ионы дисперсионной среды, имеющие заряд, противоположный заряду частицы (противоионы), притягиваются к поверхности частицы, а ионы одинакового заряда (коионы) отталкиваются от нее (что не так существенно). Наложение этого эффекта на эффект перемешивания от теплового движения приводит к образованию двойного электрического слоя (ДЭС), образованного заряженной поверхностью частицы и избытком противоионов относительно коионов, распределенных диффузно в дисперсионной среде. Таким образом, частица может рассматриваться как окруженная диффузной ионной атмосферой с общим зарядом, равным ее заряду, но противоположного знака. В основном два параметра количественно определяют строение ДЭС: поверхностный потенциал (определяемый по измерению поверхностной плотности заряда) и эффективная толщина (определяемая измерением расстояния от поверхности, на котором существует влияние ДЭС). Поскольку поверхность частицы реально находится в области с резко изменяющимся ионным составом, определение (не говоря уже об измерении) поверхностного потенциала чрезвычайно затруднено. Однако частный случай определения поверхностного потенциала, так называемого дзета-потенциала, часто используется в исследованиях устойчивости коллоидных систем. Дзета-потенциал рассчитывается из результатов электрокинетических измерений, которые проще всего получить при исследовании электрофореза – движения заряженных частиц в электрическом поле. «Толщина» ДЭС зависит от концентрации электролита и валентности противоионов. Чем больше концентрация и валентность, тем меньше расстояние от поверхности частицы, на котором заряд частицы «экранируется» противоположным зарядом ДЭС со стороны дисперсионной среды. Если две коллоидные частицы сближаются, возникает энергия отталкивания вследствие взаимодействия одинаково заряженных частиц в диффузной части ДЭС вокруг них. Энергия отталкивания увеличивается с возрастанием дзета-потенциала (вначале быстро, а затем стремится к пределу при больших значениях дзета-потенциала) и уменьшается экспоненциально по мере возрастания отношения расстояния между частицами к толщине ДЭС.

Страница:  1  2  3  4  5  6  7  8  9  10  11  12 


Другие рефераты на тему «Химия»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы